
Let’s say we start out with two classes:

class IDevice {

public:

virtual char const *GetName(void) = 0;

virtual unsigned GetType(void) = 0;

};

class IKeyboard : public IDevice {

public:

virtual bool IsCapsLockOn(void) = 0;

};

An object of type IDevice has a pointer at the beginning of it that points to the IDevice-vtable:`

Offset = 0

Offset = 1

An object of type IKeyboard has a pointer at the beginning of it that points to the IKeyboard-vtable:

Offset = 0

Offset = 1

Offset = 2

The following code snippet:

int main(void)

{

bool (IKeyboard::*p)(void) = &IKeyboard::IsCapsLockOn;

}

creates a member function pointer with the ‘vtable offset’ set to 2, because IsCapsLockOn is at offset 2.

SEE NEXT PAGE

address of GetName

address of GetType

address of GetName

address of GetType

address of IsCapsLockOn



If we were to add a new method to ‘IDevice’ as follows:

class IDevice {

public:

virtual char const *GetName(void) = 0;

virtual unsigned GetType(void) = 0;

virtual bool IsEnabled(void) = 0; // new
};

class IKeyboard : public IDevice {

public:

virtual bool IsCapsLockOn(void) = 0;

};

Then the two vtables would change as follows:

IDevice-vtable:`

Offset = 0

Offset = 1
O

Offset = 2

IKeyboard-vtable:

Offset = 0

Offset = 1

Offset = 2

Offset = 3

We have an ABI break here because the ‘vtable offset’ of IsCapsLockOn has changed from 2 to 3.

The solution to this problem is to mark the two classes as ‘extensible’ so that the compiler lays out the
vtables differently.

SEE NEXT PAGE

address of GetName

address of GetType

address of IsEnabled

address of GetName

address of GetType

address of IsEnabled

address of IsCapsLockOn



So we mark the two classes as ‘extensible’ as follows:
class IDevice extensible {

public:

virtual char const *GetName(void) = 0;

virtual unsigned GetType(void) = 0;

};

class IKeyboard extensible : public IDevice {

public:

virtual bool IsCapsLockOn(void) = 0;

};

The vtables are laid out differently now. An object of type IDevice has a pointer at the beginning of it that
points to the vtable for IDevice:`

Offset = 0

An object of type IKeyboard has a pointer at the beginning of it that points to the vtable for IKeyboard:

Offset = 0

Offset = 1

And so then we would have 3 more tables as follows:

IDevice-methods-table-for-IDevice:`

Offset = 0

Offset = 1

IDevice-methods-table-for-IKeyboard:

Offset = 0

Offset = 1

IKeyboard-methods-table-for-IKeyboard:

Offset = 0

In order to accommodate this new layout, member function pointers will become a little more complicated.
Previously a member function pointer only had one ‘vtable offset’, but now they will have two:
a ‘primary vtable offset’ and a ‘secondary vtable offset’. And so the following line of code:

bool (IKeyboard::*p)(void) = &IKeyboard::IsCapsLockOn;

creates a member function pointer with the ‘primary vtable offset’ set to 1, and and the ‘secondary vtable
offset’ set to 0.

With this new vtable layout, it will be possible to add more virtual methods to IDevice without breaking the
ABI for IKeyboard.

address of IDevice-methods-table-for-IDevice

address of IDevice-methods-table-for-IKeyboard

address of IKeyboard-methods-table-for-IKeyboard

address of GetName

address of GetType

address of GetName

address of GetType

address of IsCapsLockOn


