25 December 2023 (Draft No. 3)
std: :unaligned<T>

and

typedef<packed>
by TPK Healy

This paper describes a template class to be added to the std namespace:

template<typename T, typename Relocator = std::relocator<T> >
class std::unaligned {
protected:
std::byte buf[datasizeof (T) 1];
public:

}i

The 'std: :unaligned' class can be used to store a contained object of type T in unaligned memory, and can be
used to manipulate the contained object.

A ‘packed struct is a struct defined using ‘t ypede f<packed>'. It prises open the curly braces of a pre-existing struct
and changes every member variable into an 'std: :unaligned'. For example the following two pieces of code are
equivalent:

struct Monkey { struct Monkey {
int a; int a;
double b; double b;
char c; char c;
public: public:
float £ float £;
i }i
struct PackedMonkey { typedef<packed> Monkey PackedMonkey;

std::unaligned<int> a;

std::unaligned<double> b;

std::unaligned<char> c;
public:

std::unaligned<float> f;
i

The 'std: :unaligned' class is designed so that every operation that is trivial for T will also be trivial for
‘std::unaligned<T>’ (e.g. trivial destructor, trivial assignment, trivial copy-constructor, etc.). The
'std::unaligned' class can also be used with types that have nontrivial operations (e.g. nontrivial destructor), such

as ’'std::unaligned< std::vector<int> >,

Page 1 of 5

25 December 2023 (Draft No. 3)

Before the 'std: :unaligned' class can perform an operation on the contained object, it must relocate the bytes of
the contained object from unaligned memory into aligned memory. To perform this relocation, the standard header
<memory> contains the definition of the standard relocator, ’std: : relocator<T>’, which shall do one of two

things:
A.

B.

If T contains a static member function named ° Relocate’, invoke the ‘T:: Relocate’ static member
function. A program is illformed if a class contains a nonstatic member function named ° Relocate’, and the
compiler shall issue a diagnostic. There are four overloads of the static member function ‘T:: Relocatein
order to facilitate the work of micro-optimisers:

void Relocate(void*,void*) noexcept;

(1)

void Relocate(void*,T *) requires (!std::is_void v<T>) noexcept;)
void Relocate(T *,void*) requires (!std::is _void v<T>) noexcept; (3)
void Relocate (T *, T *) requires (!std::is_void v<T>) noexcept; (4)

1) relocates from unaligned to unaligned — (implementation is mandatory)
2) relocates from aligned to unaligned — (will fall back to () if missing)

(

(2)

(3) relocates from unaligned to aligned — (will fall back to () jf missing)
(4)

4) relocates from aligned to aligned — (will fall back to ®) or @ or Vif missing)

If T does not contain a static member function named ' Relocate’, use ’std: :memcpy’ to relocate the bytes.

Here is a possible implementation of ‘std: :relocator<T>"

template<typename T>

requires std::is_same v< std::remove cvref t<T>, T >

struct std::relocator {

b

using value type = T;

template<typename D, typename S>

requires ((std::is_void v<D> || std::is_same v<D,T>)

&& (std::is void v<S> || std::is same v<S,T>))

static void relocate(D *const d, S *const s) noexcept

{

if constexpr (requires { T:: Relocate(d,s); }) { T:: Relocate(d,s); }
else if constexpr (requires { T:: Relocate(static cast<void*>(d),s); })
{ T:: Relocate(static cast<void*>(d),s); }
else if constexpr (requires { T:: Relocate(d,static cast<void*>(s)); })
{ T:: Relocate(d,static cast<void*>(s)); }
else if constexpr
(requires{T:: Relocate(static cast<void*>(d),static cast<void*>(s));})
{ T:: Relocate(static cast<void*>(d),static_cast<void*>(s)); }

else

{
std::memcpy(d,s, datasizeof(T));

Page 2 of 5

25 December 2023 (Draft No. 3)

The 'std: :unaligned' class is similar in functionality to the ‘std: : synchronized value’ class in that a proxy
object is used as an intermediary, as follows:

std: :unaligned<double> mydub;

std::unaligned<double>::scoped manipulator m = mydub.align();

or more simply: auto m = mydub.align();
double &d = m.value();
d = 78.2;

The contained object is relocated from unaligned memory upon construction of the manipulator object, and the
contained object is relocated back into unaligned memory upon destruction of the manipulator object. For
convenience, the 'std: :unaligned' class has overloaded operators and forwarding constructors, allowing for:

std::unaligned<double> mydub (78.2);
mydub = 56.3;

std::unaligned< std::vector<double> > v (10u, 123.45);
v->push back (6) ;

The 'std: :unaligned' class has a specialisation for when alignof (T) == 1, as the relocation operation into
aligned memory is unnecessary and is therefore elided.

see next page

Page 3 of 5

25 December 2023 (Draft No. 3)

Optionally, you can provide your own Relocator class to use with 'std: :unaligned'. Your custom relocator must
implement the static member function ‘relocate’ that takes two 'void*' pointers. The other three overloads are
not mandatory and are for use by micro-optimisers. Here is an example of a custom Relocator class for use with
the libstdc++ implementation of 'std: :basic string' which is not trivially relocatable:

template<typename T>

struct MyBasicStringRelocator {

using value type = T;

static void relocate(void *const dst, void *const src) noexcept /* both unaligned */

{

i

using std::byte, std::memcpy;

byte *const dstb = static cast<byte*>(dst),

const srcb static cast<byte>(src);
// Step 1: Copy the bytes

memcpy (dst, src, _ datasizeof(T));

// Step 2: Pluck out the pointer (which might be unaligned)
// (The pointer is located at offset 0 from 'this'")
typename T::value type *pval;

memcpy (&pval, src, sizeof pval);

byte *p = static cast<byte*>(static cast<void*>(pval));

// Step 3: Check if the pointer points to within the object (and if not, return)
if (p < static cast<byte*>(src)) return;

if (p >= (static cast<byte*>(src)+ datasizeof(T))) return;

// Step 4: Adjust the pointer
p t= dstb - srcb;

// Step 5: Convert to pointer type and store in (possibly unaligned) destination
pval = static cast<typename T::value type*>(static cast<void*>(p));

std: :memcpy (dst, &pval,sizeof pval);

int main (void)

{

std::unaligned< std::string, MyBasicStringRelocator<std::string> > monkey('a', 5);

monkey->resize (4u);

Page 4 of 5

25 December 2023 (Draft No. 3)
It is permissible to treat a pre-existing block of memory as an object of ‘std: :unaligned’, as follows:

int main (void)
{
struct Monkey {
int a;
long b;
char c;

}s
char buf[32u] = {};

#1f cpp lib start lifetime as
unaligned<Monkey> &m = *std::start lifetime as< unaligned<Monkey> > (buf+3u);

felse
unaligned<Monkey> &m = *static cast< unaligned<Monkey>* > (static cast<void*>(buf+3u));

#endif

For a sample implementation of 'std: :unaligned', adapted from Connor Horman’s original code, along
with example usages, see GodBolt:

https://godbolt.ora/z/q4c14aPox

Please respond to this paper on the C++ Standard Proposals Mailing List:
https://lists.isocpp.org/mailman/listinfo.cgi/std-proposals
You can view the original discussion here:

https://lists.isocpp.org/std-proposals/2023/12/8585.php

Change Log:
e Draft No. 2 - GodBolt implementation was missing ‘return *this;’.
e Draft No. 3 - Treat pre-existing block of memory as ‘std: :unaligned’.

FIN

Page 5 of 5

https://godbolt.org/z/q4c14aPox
https://lists.isocpp.org/mailman/listinfo.cgi/std-proposals
https://lists.isocpp.org/std-proposals/2023/12/8585.php

