
Recursive macros

Document number: p???
Date: 2023-10-19
Project: Programming language C++
Audience: EWG
Author: Kelbon
Reply-to: Kelbon kelbonage@gmail.com

1

mailto:kelbonage@gmail.com

Contents

1 Abstract 3

2 Motivation 3

3 Proposed solution 4

4 Proposed wording 5

5 Implementation experience 5

2

1 Abstract

We propose a special THIS MACRO identifier, which makes it possible to
create recursive macros.

2 Motivation

There are huge amount of code, which uses code generation, fragile and
confusing macros or misuse templates for code generation

� nlohmann json[link]

� P99[link]

� Metalang99[link]

� Boost.Preprocessor[link]

� generated code in boost::pfr[link]

� generated code in AnyAny[link]

Such code is difficult to maintain, test, write and debug. It’s easy to make
a mistake and compiler is often unable to produce a good error.

But people need these opportunities.

Existing solutions do not allow programmers to avoid the problems de-
scribed above, and code generation adds its own: once a code generation
script has been written, it requires support in order to be able to change
the generated code in the future.

Modern C++ provides opportunities to get rid of the preprocessor where it
was never needed, but there will always be places where the preprocessor is
a best reflection of intentions.

Also C++20 adds VA OPT , which is ideal for recursive macros, but there
are no such thing in C++!

3

https://github.com/nlohmann/json/blob/836b7beca4b62e2a99465edef44066b7401fd704/include/nlohmann/detail/macro_scope.hpp#L320
https://github.com/133794m3r/c-library/blob/master/p99/p99_generated.h
https://github.com/Hirrolot/metalang99/blob/695a9d8dbc3507447ba28d312da229730d20c6fc/include/metalang99/eval/rec.h#L12
https://github.com/boostorg/preprocessor/blob/develop/include/boost/preprocessor/seq/fold_left.hpp
https://github.com/boostorg/pfr/blob/develop/include/boost/pfr/detail/core17_generated.hpp
https://github.com/kelbon/AnyAny/blob/4b056be2b6cbcfa1a407f7ee75279af414e390e4/include/anyany/noexport/data_parallel_vector_details.hpp#L62

3 Proposed solution

It is proposed to add a special THIS MACRO token, which is behaves as
macro name in macro definition, except name of the macro containing the
THIS MACRO token in the definition replaced in [cpp.rescan] even if it is

found during scan of the replacement list

To handle infinite recursion, there are implementation defined recursion
depth limit, like in other similar situations.

This makes possible to write such macros:

#define f o l d r i g h t (op , head , . . .) \
(head VA OPT (op THIS MACRO (op , VA ARGS)))
/* expands to (1 + (2 + (3))) */

int i = f o l d r i g h t (+ , 1 , 2 , 3) ;

Calculate count of tokens

#define TOKCOUNT IMPL(head , . . .) \
1 VA OPT (+ THIS MACRO (VA ARGS))
/* works for zero args too */

#define tokcount (. . .) \
(0 VA OPT (+ TOKCOUNT IMPL(VA ARGS)))

/* expands to (0 + 1 + 1 + 1) */

tokcount (1 , A, "gdfdg")

Replace for boost::pfr code generation script:

#define try expand (value , head , . . .) \
if constexpr (agg r e ga t e s i z e<dec l type (va lue)>() \

== tokcount (+1 , VA ARGS)) { \
auto [head VA OPT (,) VA ARGS] = value ;\
return t i e (head VA OPT (,) VA ARGS) ; \

} \
VA OPT (THIS MACRO (value , VA ARGS))

constexpr auto t i e a g g r e g a t e (auto&& aggregate) {
/* expands to similar functional

as boost::pfr for up to 3 members */

try expand (aggregate , 3 , 2 , 1) ;
}

4

https://eel.is/c++draft/cpp.rescan

4 Proposed wording

[cpp.replace.general]

The identifiers THIS MACRO , VA ARGS and VA OPT

shall occur only in the replacement-list of a function-like macro
that uses the ellipsis notation in the parameters. Token THIS MACRO

behaves as if it is replaced by name of macro in which definition
it appears, except name of such macro always replaced during
[cpp.rescan]

[cpp.rescan]

If the name of the macro being replaced is found during this
scan of the replacement list (not including the rest of the source
file’s preprocessing tokens) and its definition does not contain
THIS MACRO token, it is not replaced. Furthermore, if any

nested replacements encounter the name of the macro being
replaced, it is not replaced. These nonreplaced macro name pre-
processing tokens are no longer available for further replace-
ment even if they are later (re)examined in contexts in which
that macro name preprocessing token would otherwise have
been replaced.

[implimits]

Recursively nested macro name expansion[2048]

5 Implementation experience

The implementation in clang and examples, could be found here[link]

5

https://eel.is/c++draft/cpp#replace.general-6
https://eel.is/c++draft/cpp#rescan-3
https://eel.is/c++draft/#implimits
https://github.com/llvm/llvm-project/pull/65851

	Abstract
	Motivation
	Proposed solution
	Proposed wording
	Implementation experience

