© 0 N O Ut R W N

= = =
N o= O

Allowing multiple template parameter packs for class templates
provided they can be deduced using CTAD

Document #: DXXXXRO0

Date: 2023-04-29

Project: Programming Language C++
Audience: Evolution Working Group
Reply-to: Anoop Rana

<ranaanoop986@gmail.com>

1 Introduction

This paper proposes that class templates be allowed to have multiple template parameter packs as
long as they can be deduced using class template argument deduction(CTAD).

Currently the standard does not allow the use of multiple template parameter packs in class tem-
plates. But since C++17 added CTAD, it should be possible to have multiple template parameter
packs in a class template as long as those can be deduced using CTAD. This is like multiple tem-
plate parameter packs are already allowed by the standard in "function templates" as long they can

be deduced.

Below is an example demonstrating the issue:

//this is allowed and works as expected using deduction

template< typename... Param,typename Ret, typename... Args>

void doStuff(Ret (xptrFunc)(const Param&... param),const Args&... args)
{

}

/*this is not allowed according to the current wording but should
be allowed from C++17(&onwards) since we have CTADx/

template< typename... Param,typename Ret, typename... Args>
struct C
{

C(Ret (*ptrFunc)(const Param&... param),const Args&... args);
b

2 Motivation and Scope

The main motivation is to increase consistency of CTAD with normal template argument deduction
that happens with function templates with multiple template parameter packs where they can be
deduced. Additionally, this will increase usability of class templates.


mailto:ranaanoop986@gmail.com

3 Impact on the Standard

This proposal will only make currently invalid programs(that have multiple template parameter
packs that can be deduced using CTAD) valid. That is, currently accepted program will not be
affected /rejected by the introduction of this proposal into the standard.

4 Before-After Comparision(s)

4.1 Before

//ill-formed
template< typename... Param,typename Ret, typename... Args>
struct C

{
C(Ret (xptrFunc)(const Param&... param),const Args&... args);

}

4.2 After

//well-formed
template< typename... Param,typename Ret, typename... Args>
struct C
{

C(Ret (*ptrFunc)(const Param&... param),const Args&... args);
b



	Introduction
	Motivation and Scope
	Impact on the Standard
	Before-After Comparision(s)
	Before
	After


