
9 January 2023 Draft No. 1 Page 1 of 1

RTTI in current_exception
by T P K Healy

A C++ program can link with a shared library which has incomplete or inaccurate documentation
for the exceptions it throws, or the program may link at runtime using ‘LoadLibrary’ or ‘dlopen’
with a library which it knows very little about. Code in the main program may handle an
exception thrown from within the shared library, as follows:

#include <exception> // exception, exception_ptr

#include <typeinfo> // typeid, type_info

#include <new> // bad_alloc

extern void SomeLibraryFunction(void) noexcept(false) {}

int main(void)

{

try { SomeLibraryFunction(); }

catch (std::bad_alloc const & ) { /* Do something */ }

catch (std::exception const &e)

{

std::type_info const &ti = typeid(e);

// As 'std::exception' has a virtual destructor, it is a polymorphic

// type, and so 'typeid' will give us the RTTI of the derived class

}

catch (...)

{

std::exception_ptr const p = std::current_exception();

// We have no idea the type of the object which was thrown ? ? ?

}

}

I propose that the RTTI of the object which was thrown should be obtainable inside the body of
the ‘catch (...)’, in one of these three ways:

catch (...)

{

/* Solution No. 1 */ std::type_info const &ti = std::current_exception_typeid();

std::exception_ptr const p = std::current_exception();

/* Solution No. 2 */ std::type_info const &ti = p->ti;

/* Solution No. 3 */ std::type_info const &ti = std::exception_ptr_typeid(p);

}

This proposed feature would not be needed if we could only throw objects derived from
‘std::exception’, however since we can throw any type (for example int, std::complex<long>),
it is fitting that we should be able to get the RTTI inside ‘catch (...)’, otherwise the C++26
standard should deprecate the throwing of an object which is not derived from ‘std::exception’.


