
Allowing multiple template parameters packs of different types

Document #: P{to be assigned}R1
Date: 2022-11-14
Project: Programming Language C++

Core Language Wording
Reply-to: Anoop Rana

<ranaanoop986@gmail.com>

1

mailto:ranaanoop986@gmail.com


Abstract

The aim of this document is to make program-2 well-formed so that the template argument
matching process becomes more intuitive and consistent. Additionally in the process of mak-
ing 2 well-formed we also aim to clarify(by adding a separate clause for it) which of the two
interpretations given in this document is correct.

1 Introduction

Currently program-1.1 is ill-formed as per [temp.param#14]. There are two interpretations of
understanding this. Note that the standard doesn’t have a separate clause supporting any of these
interpretation except a comment given in [temp.param#14] supporting Interpretation of greedy
packs. The proposed wording in this document applies equally well for both interpretation.

1.1 Interpretation of greedy packs

According to this interpretation, the template parameter packs T and U are greedy meaning that
T will consume each of the explicitly provided template arguments so that there is no way for U

to be known(as it can’t be deduced nor it can be explicitly specified). This is what the comment
in the example [temp.param#14] indicates: U can neither be deduced from the parameter-type-list
nor specified. Also note that except for the above quoted comment there is no other separate
clause saying that template packs consume every explicitly provided arguments. This is what
[temp.param#14] currently says:

A template parameter pack of a function template shall not be followed by an-
other template parameter unless that template parameter can be deduced from
the parameter-type-list ([dcl.fct]) of the function template or has a default argu-
ment ([temp.deduct]).

We also note that this interpretation doesn’t explain why U can’t be the empty sequence U={}. That
is, if we take this interpretation as correct, then instead of the program being ill-formed(which it is
per current wording), why U can’t just be the empty sequence.

2



1.2 Interpretation of multiple possibilities

Another possible interpretation is that even if we explicitly provide template arguments there
is no way to tell which arguments match which parameters. For example, say the user write
f<int, double, int, int>(); then some of the possible combinations for the sequences are
T = {int}, U = {double, int, int} or T = {int, double}, U = {int, int} or
T = {}, U = {int, double, int, int} and so on. Basically there are many options and no way
of knowing which one to pick/use among them. So it makes sense to disallow program-1.1.

2 Problem with current wording

The above discussion shows that it makes sense to reject program-1.1. But what doesn’t make sense
is that when the underlying types of T and U are different, the program will still be ill-formed as per
the current wording. In particular, program-2 where T is a template type parameter pack while
U is a template non-type parameter pack is still ill-formed as per the current wording. The aim
of this document is to make program-2 well-formed.

Next is given the program that is ill-formed as per the current wording.

3 Motivation and Scope

First let’s consider why program-2 should be well-formed even if we take Interpretation of multiple
possibilities as correct. In this case, now there isn’t any kind of ambiguity while choosing the se-
quence for T and U. For example, say the user calls the function like f<int, double, true, false>();.
Now the only possibility is that T = {int, double}, U = {true, false}. And as this is the
only possibility for this call, it makes sense for 2 to be well-formed. All this is because the under-
lying types of T and U are different. One is a template type parameter pack and the latter is a
template non-type parameter pack. And so the explicitly passed arguments cannot possibly
be confused with each other as the former’s sequence expects "types" as argument(s) while the
latter’s sequence expects "values" of type bool as argument(s).

Now let’s consider why program-2 should be well-formed even if we take Interpretation of greedy
packs as correct. Note that we’re not saying that interpretation 1 is correct but instead that even
if it is correct, then also program-2 should still be well-formed. In this case, consider again the
call f<int, double, true, false>();. Now, since a template type parameter can only match

3



a template type argument while a template non-type parameter can only match a template non-
type argument, it makes sense that T={int, double},U={true, false}. Note again that this is
because T and U are of different types. One is a template type parameter pack while template
non-type parameter pack. So even if greedy matching is the correct interpretation, it can’t possibly
match the last two arguments(true, false) to T.

4 Proposed-wording

4.1 Change in temp.param

Make the following changes in [temp.param#14]:

A template parameter pack T of a function template shall not be followed by
another template parameter U unless that template parameter can be deduced
from the parameter-type-list ([dcl.fct]) of the function template or has a default
argument ([temp.deduct]) or the following parameter U has a different un-
derlying type than any of its preceeding parameters.

4.2 Addition of clause

In addition to the above indicated change in [temp.param#14] we also propose to add a separate
clause for clarifying which interpretation(among the two given in this document) is correct. As to
our current understanding, we support Interpretation of multiple possibilities over interpretation 1
because interpretation 1 doesn’t explain why U can’t be the empty sequence.

Thus, a clause clarifying the same should be added.

5 Before/After Comparisons

5.1 Type Pack vs Non-Type Pack

4



5.2 Type pack vs Non-Type Non Pack

5.3 Type Pack vs Template Pack

5.4 Type Pack vs Non-Type Non Pack Revisited

5



5.5 Type Pack vs Non-Type Pack Revisited

5.6 Three parameter packs ill-formed

5.7 Three parameter packs well-formed

6



6 Impact on the standard

This proposal makes function templates involving multiple template parameter packs more useful
and requires minimal change in the core standard language. It will only allow some of the previously
rejected programs(which have multpile template parameter packs) to be now well-formed and not
the opposite. That is, some previously rejected program can now be compiled and no previously
accepted program(involving multiple template parameter packs) will be rejected.

7


	Introduction
	Interpretation of greedy packs
	Interpretation of multiple possibilities

	Problem with current wording
	Motivation and Scope
	Proposed-wording
	Change in temp.param
	Addition of clause

	Before/After Comparisons
	Type Pack vs Non-Type Pack
	Type pack vs Non-Type Non Pack
	Type Pack vs Template Pack
	Type Pack vs Non-Type Non Pack Revisited
	Type Pack vs Non-Type Pack Revisited
	Three parameter packs ill-formed
	Three parameter packs well-formed

	Impact on the standard

