Flat Dynamic Polymorphism library

Document number: | p?7?

Date: 2022-07-16

Project: Programming language C++
Audience: LEWG

Author: Kelbon

Reply-to: Kelbon kelbonage@gmail.com |

mailto:kelbonage@gmail.com

Contents

1 Introductionl
2 Designl
2.1 Basicconcepts.
2.2 Polymorphic value, reference and pointer|
3__Motivationl
BI_Streams oo
[3.2 polymorphic_allocator and memory resources|
[3.3 shared ptr|
[4 Actions on polymorphic types|
M1 invoke<Method>
[4.2 any_cast<T>.
[6_TInterfacel
[p.1 any with<Methods...>.
[0.2 poly ref<Methods...>.
[0.0 poly ptr<Methods...>.
[0.4 const_poly ref<Methods...>
[>.5 const poly ptr<Methods...>

[6 Examples|

6.1 Typeerased print|
[6.1.1 About code generation|
6.2 fireoncel

1 Introduction

Since there are architecting limitations in existing mechanisms of dynamic
polymorphism, the flat dynamic polymorphism(FDP) is proposed as a
generic, extendable, and efficient bridge between static and dynamic poly-
morphism.

It can largely replace the existing ”virtual mechanism”, better express the
intentions of the programmer in the code, improve perfomance (for exam-
ple by reducing number of allocations) and less error prone(virutal destruc-
tors, slicing, memory management etc)

FDP goes well with existing mechanisms in C++, such as overloading and
templates, so it makes it easier to use and learn C++. It can be used in
almost any case where virtual functions are currently used, with improved
performance and code readability.

The types such as std:: function<R(Args...)>, std::any, std :: move_only_function<R(Args...)>
are special cases of FDP and therefore FDP is a development and general-
ization of the approaches existing in the C++ standard.

As proof of concept, i have implemented all proposed here as a single-header
library, meeting the C++20 standard.

The implementation, including examples, could be found here

https://github.com/kelbon/AnyAny

2 Design

2.1 Basic concepts

The library provides the following ”type generators”:

® any with<Methods...>
® poly_ref <Methods...>
® poly_ptr<Methods...>
e const_poly_ref <Methods...>

® const_poly_ptr<Methods...>
typical usage:

using any_drawable = any_with<Draw, Method2, Method3>;

Where each Method in current implementation is a type template with one
parameter(typename T) and addressable static member function named
do_invoke, which first parameter represents erased type and must be ex-
actly T, T&, const T&.

Example:

template <typename T>
struct Foo {
static int do_invoke(const T& self , double valueO, int valuel) {
return self.foo(value0, valuel);

¥
ks
Methods which ’self’ type is a const T& or T(invoking by copy) are named
”const methods”.
Result type and all parameters types of do_invoke except the first must
be independent from T, otherwise the program is ill-formed, no diagnostic
required.
Below in article polymorphic value is an specialization of alias template
any_with.

2.2 Polymorphic value, reference and pointer

Now we have nothing polymorphic with value semantic in standard library,
except std::any, which is hard to use, because it can only destroy itself.
FDP provides abstraction of polymorphic value - type erased storage for
one or zero values and std:: decay t<T> of last emplaced value is a dynamic
stored type(DST).

Polymorphic value, reference and pointer are similar to non-polymorphic T,
T&, T* as much as possible:

poly_ref may be created by dereferencing pointer.

poly_ref is converitble to const_poly_ref

poly_ptr is convertible to const_poly_ptr

operator& of poly_ref and polymorphic value returns poly_ptr.

Below in the article, polymorphic value, reference and pointer will be called
the common name ”polymorphic type”.

Polymorphic types with more restrictions can be converted to polymorphic
types with less restrictions

Example:

static_assert (
std ::is_convertible_v<
poly_ref <M1, M2, M3, M4>,
poly _ref<M2, M3>>);

3 Motivation

There are many cases, when you need dynamic polymorphism, but:
e don’t need a hierarchy

e need both dynamic and static polymorphism without code duplica-
tion and performance loses

e want to separate polymorphic behavior and type

e just want to write simple and clear code that will reflect your inten-
tions, rather than inefficient dealing with memory allocations and
“throw "not implemented””

Let’s take simple examples from the standard library:

3.1 Streams

You can see that standard streams use both virtual inheritance and virtual

functions (stream destructor and a lot of virtual functions in the std::basic_streambuf),
while all this is needed only to be able to .tie the stream, which is far from

always needed.

If we could separate polymorphism and types, then we could write non-

polymorphic stream types, which are essentially output/input iterators to

the underlying buffer and some ”any _iostream” type that would be used

for situations where you need to be able to .tie the stream (for example,

std::cout would be a poly_ref <Write>)

namespace std2 {

— Write and Read are Methods for FDP
template<typename T>

struct Write {...};

template<typename T>
struct Read{...};

template<typename OutBuf, typename Char,
typename Traits = std::char_traits <Char>>

struct basic_ostream;

template<typename InBuf, typename Char,

6

typename Traits = std:: char_traits <Char>>
struct basic_istream;

using any_istreambuf = any_with<Read>;
using any_ostreambuf = any_with<Write >;
using any_iostreambuf = any_with<Read, Write>;

template<typename Char,

typename Traits = std::char_traits <Char>>
using legacy_basic_ostream =

basic_ostream <any_ostreambuf , Char, Traits >;
— etc etc

}

— and now spanstream/stringstream/etc are not use virtual functions!

We would gain in performance, remove virtual tables with destructors for
streams(we really dont need it, because we never call std::cout destructor,
isn’t it?), and we would have much more flexibility in creating user defined
streams.

3.2 polymorphic_allocator and memory resources

Here the situation is even more obvious. Do memory resources really need
to be polymorphic? Why is a polymorphic allocator polymorphic and not a
template from a memory resource?

template<typename T>
struct Allocate {...};

template<typename T>
struct Deallocate {...};

using any_memory_resource_ptr = poly_ptr<Allocate, Deallocate >;
template<typename T, typename ResourcePtr>

struct allocator {
ResourcePtr ptr;

b
It gives us:

e both polymorphic and non polymorphic allocators with custom mem-
ory resources, which can be used in type erasing such as std::generator

7

(and not Allocator = void by default, which means ”type erased”,
but any_memory _resource because generator dont needs typed alloca-
tor)(and not by default obviously)

e casy to create user defined resources(just type with allocate/deallo-
cate)

e perfomance

e better semantics of the resulting code

3.3 shared ptr

Another place where we pay for something. what we don’t use: shared_ptr
and its type erased deleter. Sometimes this is useful, but in the vast major-
ity of cases it just wastes resources. With flat dynamic polymorphism we
could do this:

— shared ptr in alternative universe
namespace std2 {

template<typename U>
struct delete_for {
template <typename T>
struct method {
static constexpr void do_invoke(const T& self , Ux value)
noexcept {
self (value);
}

};
}s
template<typename T>

using any_deleter_for =
aa::any_with<aa::copy, aa::move, delete_for<I'>::template method>;

template <typename T,

typename Deleter = ::std:: default_delete <I>>
struct shared_ptr;

template<typename T>

using legacy_shared_ptr =

::8td2 :: shared _ptr<T, any_deleter_for <I>>;

}

4 Actions on polymorphic types

4.1 invoke<Method>

invoke<Method> is a functional object with operator(), which accepts poly-
morphic object and arguments of Method’s do_invoke (except first, which
represents erased type) and performs as if:

return Method<DST>::do_invoke (DynamicValue, static_cast<Args&&>(args)...);

4.2 any_cast<T>

accepts returns it DST is not std: :decay_t<T>
poly_ptr T* nullptr

const_poly_ptr const std::remove reference t<T>* | nullptr

poly_ref std::remove_cv_t< T > throws std::bad_cast

const_poly _ref

see below

throws std::bad_cast

any_x auto&e&

std: :remove_cv_t<T>

throws std::bad_cast

any_x auto™®

std: :remove_cvref _t<T>x*

nullptr

const any_x auto*®

const std::remove_cvref t<T>x*

nullptr

Where any_x is a concept of type created by basic_any_with<Alloc, SooS, Methods...>
or inheritor of such type.
any_cast for const_poly_ref returns std :: conditional t <std:: is_reference v <T>,

const std::remove_reference t<T>&, std::remove_cv_t<T>>
If T is an array, function or (possibly c¢v) void, then program is ill-formed.

5 Interface
Library provides several from-box Methods:

e destroy - any_with has it by default, but references and pointers may
not have it

e move - enables move ctor, move/copy assignment operators for poly-
morphic value

® copy_with<Alloc, SooS> which has inner template method<T> - enables
copy ctor and copy assignment for polymorphic value with same Al-
loc and SooS

e type_id - enables enables any _cast for poly_ref/poly ptr

e hash - enables specialization of std::hash for polymorphic types

5.1 any with<Methods...>

any_with<Methods...> is an alias to basic_any_with<std::allocator <std::byte>, N, Methods...>,
where N is an implementation defined number, which represents Small Ob-
ject Optimization buffer size

template<typename Alloc, size_t SooS, template<typename> typename ... Methods>
using basic_any_with = ...;

Lets call a type created by basic_any_with alias Any, then Any guaranteed
to have following interface: (All constructors and copy/move assignment
operators are provides strong exception guarantee, if emplace throws an
exception, then Any is empty (has_value() == false))

struct *type created by basic_any_with* Any {
template <template<typename> typename Method>
static constexpr bool has_method;

Any(); — creates an empty Any

— from any type, if it satisfies requirements of Methods...
Any(Alloc);

Any(autod& value);

— from any value, but with Alloc

Any(const Any&) requires has_ method<copy>;

10

Any(std :: allocator_arg_t , Alloc, auto&&);
Any (Any&&) noexcept requires has_method<move>;

Any& operator=(const Any&)
requires has_method<move> && has_method<copy >;

Any& operator=(Ant&&) noexcept requires has method<move>;
using ptr = poly_ptr<Methods... >;

using ref = poly_ref<Methods... >;

using const_ptr = const_poly_ptr<Methods... >;

using const_ref = const_poly_ref<Methods...>;

template <typename T, typename... Args>
Any(std::in_place_type_t <T>, Args&&...);

template <typename T, typename U, typename... Args>
Any(std::in_place_type_t <I>, std::initializer_list <U>, Args&&...);

bool has_value() const noexcept;
— returns reference to emplaced value
template<typename T, typename... Args>

std :: decay_t<I>& emplace(Args&&...);

template <typename T, typename U, typename... Args>
std :: decay_t<T>& emplace(std::initializer_list <U>, Args&&...);

void reset () noexcept;

poly_ptr<Methods... > operator&() noexcept;
const_poly_ptr<Methods... > operator&() const noexcept;

i

5.2 polyref<Methods...>

Non owner, always not null, easy to create view to polymorphic value

template <template<typename> typename ... Methods>
struct poly_ref {
constexpr poly_ref(const poly.ref&) = default;
constexpr poly_ref(poly_ref&&) = default;
— cannot rebind reference

11

void operator=(poly_ref&&) = delete;
void operator=(const poly_ref&) = delete;
template<non_const T>
constexpr poly_ref(T& value)
noexcept requires (!std ::same_as<poly_ref<Methods...>, T>);

poly _ptr<Methods... > operator&() const noexcept;

}s

5.3 poly ptr<Methods...>

Non owner, nullable, easy to create view to polymorphic value. Trivially
copyable.

template <template<typename> typename ... Methods>
struct poly_ptr {
poly_ptr() = default; — creates null pointer

poly _ptr(std:: nullptr_t) noexcept;
poly _ptr& operator=(std:: nullptr_t) noexcept;

poly ptr(non_const autox ptr) noexcept;
template<any.-x T>
poly_ptr (Tx ptr)

noexcept requires (non_const<T> && *T has same Methods...x);
voidx raw() const noexcept; — returns raw pointer to value
bool has_value() const noexcept;
bool operator==(std:: nullptr_t) const noexcept;

explicit operator bool() const noexcept;

poly ref<Methods... > operator*() const noexcept;
const poly_ref<Methods...>% operator—>() const noexcept;

}s

5.4 const_poly ref<Methods...>

Similar to poly_ref <Methods...>, but can be created from poly_ref<Methods...>
or reference to const value. Not extends lifetime.

12

5.5 const_poly ptr<Methods...>

Similar to poly_ptr<Methods...>, but can be created from poly_ptr<Methods...>
or pointer to const value/polymorphic value.

13

6 Examples

6.1 Type erased print

Lets see simplest way to implement print for variable number of argu-
ments:

template<typename ... Ts>
void print(const Ts&... args) {
(std::cout << ... << args);
}
int main() {
print (5, 10, std::string{"abc"}, std::string _view{"hello world"});

}

But in this case we have different "print’ for each set of arguments, one for
<double, int>, another for <int, double> etc.

Most effective way is to erase printing each type and then create only one
print function for any count of them (similar to std::make_format_args)
How it looks with FDP:

template <typename T>
struct Print {
static void do_invoke(const T& self) {
std :: cout << self;

}

b
we can remove initializer list here, but it is exposition only
void print (std::initializer_list <aa::const_poly_ref<Print>> list) {
std ::ranges :: for_each (list , aa::invoke<Print >);
}

int main() {
print ({1, 2, std::string("hello"), std::string_view ("world")});
}

6.1.1 About code generation

To check the compiler’s ability to optimize such code, I now conducted
several experiments, for example, here (exposition only) type erasure on
std::visit. At the moment, with options to reduce the amount of gener-
ated code as much as possible, the clang can hardly improve the std::visit,

14

https://godbolt.org/z/E1EejKaMs

but with type erasure, it was able to reduce the amount of code by more
than 10 times (and this value grows non-linearly with the number of vari-
ant types and the number of variants).

On the other hand, with maximum optimization for speed, the generated
code is same. Line to line.

And here code generation for the main feature in polymorphic code - func-
tion calls. Again, identical code

And of course it would be difficult to avoid comparisons with one language,
where such constructions are the only tool for polymorphism: link,

6.2 fire once

For example, we are writing thread pool and we need a polymorphic ob-
ject, which will store any function and we only need to call it once, we
dont need RTTI, copy, move etc, how to express our intentions in code?

template<typename T>
struct invoke_once {
static void do-invoke (T& self) {
(void) self ();

}
}s

using fire_once = any_with<invoke_once >;

15

https://godbolt.org/z/xYWvbGz88
https://godbolt.org/z/r8Mj9sahc
https://godbolt.org/z/7WojffKGY

	Introduction
	Design
	Basic concepts
	Polymorphic value, reference and pointer

	Motivation
	Streams
	polymorphic_allocator and memory resources
	shared_ptr

	Actions on polymorphic types
	invoke<Method>
	any_cast<T>

	Interface
	any_with<Methods...>
	poly_ref<Methods...>
	poly_ptr<Methods...>
	const_poly_ref<Methods...>
	const_poly_ptr<Methods...>

	Examples
	Type erased print
	About code generation

	fire_once

