C++ proposal
version 2

New keyword for C++: dynamictype
Jerry Moravec

Unemployed, almost-homeless
Czech Republic
E-mail: .moravec.email@seznam.cz

Abstract

The C++ language is here for more that 36 years and is still under development. Sometimes, C++
borrows some ideas from other programming languages, sometimes works on its own way. Presented
proposal try to introduce a new type of basic variable which would be capable to hold a type of a
variable or a type of a class or a struct. This variable should be capable to define target new type in
type-cast operations such us: static_cast or dynamic_cast etc. Both at running time and at compilation
time. Type of a variable or a class/struct is usually given by its unique name. Thus, the new basic
variable should contain a string — the name of basic datatype or a type of user defined datatype. This
name is then used in the type-cast operation at running time. The target type is, of course, well known
at compilation time.

1. Description

Associated operator with type-cast operations in C++ is usually given inside the angle brackets
“<target type>" or in the round brackets “(target type)”. The type-cast operation which uses the angle
brackets is connected with several keywords static_cast, dynamic cast and reinterpret cast. Proposed
new key-word should be capable to work with both cases of type-case operations.

I would like to propose a new key-word of the C++ language: "dynamictype". It is useful in type-cast
operation(s) such us:

int myvariable = 0;

dynamictype mytype;

mytype = typeof(float);

std::cout << dynamic_cast< mytype >(myvariable);

The “mytype” is not a standard variable, nor pointer. This variable holds “a type definition”, the float
type in this case. It is the type-casting extension. E.g. “dynamic_cast” has, indeed, in the angle
brackets “a variable” which is “a type” not a standard variable such us int or float or pointer. The
“mytype® is a variable, but the type stored into it is well known at compilation time.

2. Motivation

Main motivation is a code simplification. The best is a real example, so complex example is listed
below. The main important part is on the lines 20 and 50-62.

1. #include <iostream>
2. #include <string>

mailto:j.moravec.email@seznam.cz

#include <iterator>
#include <algorithm>
#include <vector>

struct Example 1 {

int iteml;
float item2;
}i

struct Example 2 {
unsigned long iteml;
int item2;

}i

struct arrItem ({
int key;
dynamictype Decl;
void* link;

}i

int main ()

{
arrItem *item = nullptr;

Example 1 *el = nullptr;
Example 2 *e2 = nullptr;

std::vector<arrItem> Datalist;

// data type 0 is Example 1
el = new Example 1();
el->iteml = 101;

el->item2 = (float)102.10;

DataList.push back(arrItem());

DataList[0] .key = 0;

DataList[0].typeDecl = typeof(Example 1);
DataList[0].link = el;

// data type 1 is Example 2

e2 = new Example 2();
e2->iteml = 201;
e2->item2 = (int)202;

DataList.push_back(arrItem());
DataList([1l].key = 1;

DataList[1l].typeDecl = typeof(Example 2);
DataList[0].link = e2;

for (int 1 = 0; i < (int)Datalist.size(); i++) {
std::cout << "Example 1: key: "

<< Datalist[i] .key
<< "; iteml: "

<< dynamic_cast< DataList[i].typeDecl >(DataList[i]

<< "; item2: "

<< dynamic_cast< DataList[i].typeDecl >(DataList[i]

std::cout << "\n";
}// for
delete (DataList[0].1link);
DataList[0].link = nullptr;
delete (DataList[1].1link);

DataList[1].link = nullptr;

Datalist.clear();

}// int main ()

.link)->iteml;

.link)->item2;

If I do not use the expression:
“dynamic_cast< DatalList[i].typeDecl >(DataList[i].link)->item1;”

I have to use a switch-case key-word. Identical example listed above needs to be written is this
standard way utilizing switch-case in this way:

#include <iostream>
#include <string>
#include <iterator>
#include <algorithm>
#include <vector>

struct Example_1 {

int iteml;
float item2;
s

struct Example_2 {
unsigned long iteml;
int item2;

};

struct arrItem {
int key;
void *1link;

¥
int main()

arrItem *item = nullptr;
Example_1 *el = nullptr;
Example_2 *e2 = nullptr;

std::vector<arrItem> Datalist;

// data type © is Example_1
el = new Example_1();
el->iteml = 101;

el->item2 = (float)102.10;

DataList.push_back(arrItem());
DatalList[0].key = ©;
DatalList[@].1link = el;

// data type 1 is Example_2
e2 = new Example_2();
e2->iteml = 201;

e2->item2 = (int)202;

DatalList.push_back(arrItem());
DatalList[1].key = 1;
DatalList[1].link = e2;

for (int 1 = @; i < (int)DataList.size(); i++) {
switch ((int)DataList[i].key)

case 0:
{
Example_1 *exl = (Example_1*)DatalList[i].link;
std::cout << "Example_1: key: "
<< DataList[i].key
<< "; item1: "
<< exl->iteml
<< "; item2:
<< exl->item2;
std::cout << "\n";

break;

}// case @:
case 1:
{
Example_2* ex2 = (Example_2*)DatalList[i].link;
std::cout << "Example_2: key: "
<< DataList[i].key

<< "; item1: "

<< ex2->iteml

<< "; item2: "

<< ex2->item2; // e.g. safe_cast<string>(ex2->item2);
std::cout << "\n";

break;
}// case 1:

}// switch

}// for

3. Consequences

The consequences for compiler-makers are, unfortunately, really wide, but the illustrative simplified

code is above. The compiler will be more complicated &). However, the code will be more
simplified.

4. Experience

The practical example is described in the section 2. of this proposal, but such improvement would be
great “gadget” not only for C++ but for many others programming languages such us C# or C++/CLI
(ECMA 327) or C++/WinRT etc.

5. Summary

This paper proposed the extension of C++ with the keyword ,,dynamictype®, the keyword enables to
change a data-type using classic type-cast operation even inside angle brackets of standard type-case
expressions such as dynamic_cast, reinterpret cast. The main advantage of such new thing is a code
simplification. The implementation cost is maybe not “small”, but the consequences for existing code
are minor or none.

