
Performance of C++ Bit-vector Implementations

Vreda Pieterse
FASTAR Research Group

Dept. of Computer Science
University of Pretoria

South Africa
vpieterse@cs.up.ac.za

Derrick G. Kourie
FASTAR Research Group

Dept. of Computer Science
University of Pretoria

South Africa
dkourie@cs.up.ac.za

Loek Cleophas
Department of Mathematics

and Computer Science
Eindhoven University of

Technology, The Netherlands
loek@loekcleophas.com

Bruce W. Watson
FASTAR Research Group

Dept. of Computer Science
University of Pretoria

South Africa
bruce@brucewatson.com

ABSTRACT

This paper describes an experimental study to compare
the performance of various dynamically resizable bit-vector
implementations for the C++ programming language.

We compare the std::vector<bool> from the Standard
Template Library (STL), boost::dynamic_bitset from
Boost, Qt::QBitArray from QT Software, and BitMagic’s
bm::bvector<> with one another.

We also compare std::vector<char> from the STL with
these because it is a dynamically resizable vector imple-
mentation that has been suggested to be an acceptable
alternative for std::vector<bool>.

We describe the test data and the methods that were ap-
plied to measure memory use and processing time. This
lays a foundation for comparing other parts of the different
C++ libraries.

The results are presented and discussed in terms of the dif-
ferences in the implementations of these data structures.
Although the results reported in this article is specific to
the mentioned C++ libraries, the techniques used to mea-
sure and compare the performance of the different libraries
go beyond C++ bit-vectors and may be used more gener-
ally.

Categories and Subject Descriptors

E.1 [Data Structures]: Arrays; H.3.4 [Information Stor-
age and Retrieval]: Systems and Software—Performance
evaluation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAICSIT ’10, October 11-13, Bela Bela, South Africa
Copyright 2010 ACM 978-1-60558-950-3/10/10 ...$10.00.

General Terms

Measurement, Performance

Keywords

C++; bit-vectors; benchmark; Standard Template Library

1. INTRODUCTION

There are many applications that can apply bit-vectors to
implement functionality. Application areas for bit-vectors
include graphics, hardware programming, encryption, net-
working and databases. For C++, there is a number of
different bit-vector implementations available to choose
from. This article takes a look at a few available imple-
mentations of bit-vectors of which the size can be specified
and altered at runtime, and compares their performance
using data sets of varying sizes.

This type of comparison has probably been performed
many times in industrial settings. However, they are likely
to be conducted in a non-formal way. A meticulous ap-
proach has been taken to measuring time and space per-
formance and this approach is outlined in this article. It
is hoped that this will not only enhance the credibility of
our cross-comparative results, but that it will also serve
as a model for future benchmarking endeavours.

Section 2 acquaints the reader with the different bit-vector
implementations included in this study, while Section 3 de-
scribes the algorithm that was used to benchmark these
implementations. Section 4 discusses details of the ex-
perimental environment regarding the platform that was
used and the software that was implemented to conduct
this experimental study. Section 5 describes how the data
was gathered and analysed, and shows the results. The
concluding Section 6 offers some insights about the bit-
vector implementations used, based on their observed per-
formance differences.

2. BIT-VECTOR IMPLEMENTATIONS

242



This section discusses some, easily obtainable, implemen-
tations of bit-vectors that support bit-wise operations on
large bit-vectors of which the size may be varied at run
time. Since we are interested in bit-vectors that are dy-
namically extendable, we do not consider those whose size
is fixed at compile time such as the STL’s std::bitset.

2.1 std::vector<bool>

In the C++ 03 standard [13] the vector class template in-
cludes a special template specialisation for the bool type.
This specialisation is provided to optimise for space allo-
cation. Its bit-manipulation functions are limited. The
only member function that was added to those already
in std::vector<T> is flip(). This member function is
overloaded and can thus be used to invert all the bits of
a vector at once or to invert a single specified bit. There
is no set() or reset() as would be expected in a data
structure that is implemented for the purpose of doing
data manipulation at bit level. It also does not provide for
any bit-wise operations such as operator| or operator>>
on whole vectors. However, the operator[] is provided.
This can be used in combination with the flip() opera-
tion on a single bit to implement the desired results. This
forces the programmer to iterate through the bits in the
vector to achieve bitwise operations.

Meyers [17] advised against its use. According to Meyers
“its elements are not individually addressable and hence
it does not meet the requirements of a container”, despite
the fact that the operator[] is provided. Furthermore,
Meyers is of the opinion that its iterators do not meet
the iterator requirements. This has broken user code in
the field in mysterious ways [24]. The space optimisation
intended by the implementation of std::vector<bool>

exacts a hefty toll: a quirky interface, speed overhead,
and incompatibility with the STL [14].

Following the issue that was filed in 1996 regarding the
above mentioned flaws of std::vector<bool>, it was pro-
posed in 2007 that it be deprecated or removed [8]. How-
ever, in November 2009 this issue was labeled as “not a
defect” (NAD) [12], in other words, std::vector<bool>
will remain part of the C++ Standard for the foreseeable
future. Furthermore, a proposal that was made in 2006
to replace it with an alternative [1], was re-opened as a
feature request in September 2009 [11], albeit no longer
with the intention to replace it. This was pre-emptively
filed as “NAD Future”, in other words, the addition to the
standard of the proposed std::dynamic_bitset that ad-
dresses all the mentioned shortcomings, is postponed to an
unspecified future date and it will most likely not be added
in the near future. A dynamic bit-vector that closely re-
sembles the ill fated proposed std::dynamic_bitset can
be found in the Boost library (see Section 2.3).

Despite its obvious shortcomings and evidence that it is
not widely used [8], std::vector<bool> was included in
our experiments for the sake of completeness.

2.2 std::vector<char>

std::vector<char> is a dynamically resizable vector of
addressable characters that can easily be cast to bools.
Owing to the controversy around std::vector<bool>, pro-

grammers were advised to use std::vector<char> instead
[14, 17]. When using this implementation one does not
have direct access to the rich set of bit-wise manipulations
such as those offered in dedicated bit-vector implementa-
tions. However, the specifications of the required opera-
tions are fairly straightforward. std::vector<char> pro-
vides an interface that is similar to bit-vector implemen-
tations on the concept level. The std::vector<char> im-
plementation was included in the experiments because it is
widely accepted as an alternative for std::vector<bool>
and because we were particularly interested in compar-
ing its performance with that of std::vector<bool> to
determine if it is indeed a viable alternative.

2.3 boost::dynamic_bitset

Boost is a collection of free, open-source, peer-reviewed
C++ libraries intended for eventual inclusion in the C++
STL. The project was originally proposed on May 6, 1998
by Beman Dawes [6]. Proposed libraries are accepted into
Boost only after undergoing a formal review, during which
members of the Boost mailing list may comment on their
evaluation of the proposed library [7].

The boost::dynamic_bitset class, despite being called a
bitset, is a class for manipulating bit-vectors. It has been
included in the Boost library since October 2002 [21]. It
provides accesses to the value of a bit-vector’s individual
bits via an operator[] and provides all of the bit-wise
operators that one can apply to built-in integers, such as
operator& and operator<< on whole bit-vectors as well as
all relevant operators with individual bits. The number of
bits in the vector is specified at runtime via a parameter
to its constructor.

boost::dynamic_bitset closely resembles the proposed
dynamic bit-vector, std::dynamic_bitset.

2.4 Qt::QBitArray

Qt is a C++ class library to support the development of
cross-platform applications with graphical user interfaces
(GUIs). Qt is primarily developed and maintained by the
developers at Qt Software, a unit within Nokia. It is li-
cenced under both open source licenses (LGPL and GPL),
as well as a commercial license. Therefore, Qt can easily
be used for a wide variety of project types [19].

Apart from providing a rich set of GUI classes, Qt also
redefines almost all C/C++ standard data structures and
provides for a wide variety of new ones. Most of the class
implementations in Qt that replace classes of the STL,
have similar interfaces to the corresponding classes in the
STL. Sometimes they add some functionality, but they
are mostly there to simplify their usage in collaboration
with the sophisticated GUI classes in Qt. The Qt class
that corresponds with the proposed dynamic bit-vector
std::dynamic_bitset that was mentioned in Section 2.1
is Qt::QBitArray. It is a special bit-array that provides
functionality to access individual bits, and perform bit-
operations on them with operations such as operator[],
setBit() and toggleBit(). It also provides functional-
ity to perform bit-operations on entire arrays with oper-
ations such as operator&, operator| and operator^[4].
However, it does not support bit-wise shift operations.

243



The popularity of C++ as a programming language com-
bined with the fact that cross-platform applications with
GUIs have become the norm, contributed to wide adop-
tion of Qt as an application development environment of
choice. Qt is used to implement prominent applications
such as KDE, Google Earth, Skype, Adobe Photoshop Al-
bum and VirtualBox. For these reasons we have included
Qt in our comparison.

2.5 bm::bvector<>

BitMagic is an Open Source, free C++ library designed
and developed to implement efficient platform indepen-
dent bit-vectors[16]. The founders of BitMagic identified
the need to implement more sophisticated data compres-
sion in the internal representation of bit-vectors. Their
main aim is to provide a tool to implement data-intensive
technologies such as streaming media and large database
applications. It was launched in 2002.

The implementation of BitMagic’s bm::bvector<> is a dy-
namically sized bit-vector that applies several types of on
the fly adaptive compression. Owing to the sophisticated
internal representation, it is not required that the pro-
grammer specify the size of the bit-vector that is repre-
sented by a bm::bvector<>. The actual memory used by
its implementation is adapted to best suit the data at
hand. Because the size of a bm::bvector<> is internally
managed, no public operation to resize it is provided. The
bm::bvector<> has a protected member function that is
used by other public operations to automatically maintain
optimal size.

bm::bvector<> provides by far the richest set of oper-
ations when compared to the other data structures dis-
cussed in this article. All bit-wise operations can be per-
formed on whole arrays, subsections of arrays and indi-
vidual bits. It also provides iterators.

The advances in hardware that in turn allow an ever grow-
ing amount of data to be processed, resulted in the pro-
cessing of very large data sets to be commonplace. The
ability to optimise compression of these huge data sets has
become a necessity. Experiments with the bm::bvector<>
were therefore included. We expected that its perfor-
mance would compare favourably to the corresponding
data structures in the C++ STL and the Boost library.

3. THE EXPERIMENTAL ALGORITHM

The purpose of this article is to compare the performance
of different implementations of dynamic C++ bit-vectors
in a situation that resembles as close as possible a real
world application. Since some of the data structures in-
cluded in our study do not support bitwise shift opera-
tions, we avoided their use. For this reason we selected
an algorithm for calculating the transitive closure of a bi-
nary relation represented as a vector of bit-vectors. The
algorithm requires storage and manipulation of multiple
bit-arrays and uses a representative set of the bit-wise op-
erations found in all the implementations of bit-vectors we
included in our study. During the initialisation phase it
makes heavy use of set and reset operations on individ-
ual bits. During the calculation phase it relies on inten-

sive inspection of individual bits, repetitive comparison of
whole arrays, as well as recurring execution of bitwise-OR
operations on whole arrays. Although no bitwise-AND
operations are required in our chosen algorithm, we deem
the algorithm adequate based on the assumption that the
performance for bitwise-AND and bitwise-OR operations
would be similar.

The transitive closure R+ of a relation R ⊆ U × U is
the smallest subset of U × U such that R+ is transitive
and R ⊆ R+. There are many known algorithms for cal-
culating transitive closure, of which the one proposed by
Warshall [26] is probably the most widely used. How-
ever, a primitive algorithm described by Baker [2] was
deemed to be more suitable for our experiment. In pi-
lot experiments with different algorithms to calculate the
transitive closure of a relation, the performance of Baker’s
algorithm was less sensitive to variations in the density
and distribution of ‘on’-bits of its input data than some
of the other algorithms to calculate the transitive closure
of a relation. This is the case because this primitive al-
gorithm systematically works toward the solution without
taking any advantage of any knowledge about the under-
laying data. This algorithm is listed in Figure 1 using the
Guarded Command Language (GCL) defined by Dijkstra
[9]. In this listing B[n, n] is the set of all n × n Boolean
matrices. If M ∈ B[n, n],M has n rows and n columns
numbered 0, 1, 2, . . . (n − 1). M [i, j] refers to the bit in
row i and column j of M . The body of the loop in this
algorithm is essentially three levels of nested loops, each
requiring n operations, yielding a complexity of O(n3). It
can be shown that the algorithm will terminate after at
most log2n + 1 iterations. Therefore, the complexity of
the algorithm is O(n3log2n).

4. EXPERIMENTAL ENVIRONMENT

4.1 Language and Compiler

The experimental algorithm was implemented in C++. A
separate implementation was created for each of the data
structures mentioned in Section 2.

Each individual C++ implementation of the algorithm
was compiled using g++ from the GNU Compiler Collec-
tion (GCC) for compiling C++ programs as it is included
in the Minimalist GNU for Windows (MinGW) Version
3.81 with patches from Eli Zaretskii (March 2008) [23].

GCC provides optimising options which aim to increase
the speed, or reduce the size, of the executable files it
generates. In each case, the compilation of our code was
done with the maximum level of optimisation enabled by
using the -O3 option.

4.2 Hardware

The experiments were executed on an Intel Centrino Duo
laptop with 1 GiB RAM. The processors are Genuine In-
tel(R) CPU’s T2300 @ 1.66 GHz. Its operating system is
Micosoft Windows Vista Business Version 6.0 (Build 6001:
Service Pack 1).

244



Figure 1: Baker’s algorithm for calculating transitive closure

Table 1: Number of memory blocks needed to execute the program implementing each of the data
structures

∆ +
Data Structure ∆ 327 328 329 330 331 332 333 334 335

std::vector<char> 0 61% 38% 1%
std::vector<bool> 7 66% 29% 5%
boost::dynamic_bitset 9 66% 32% 2%
bm::vector<> 12 63% 34% 3%
Qt::QBitArray 275 1% 15% 11% 9% 14% 16% 22% 9% 3%

Prior to running the experiments all applications were
closed and all memory resident processes that are not
needed, were stopped. Further, the Task Manager was
used to manually set the process affinity of all the re-
maining background processes to one of the CPU’s and
that of the benchmark system to the other CPU. Because
the experiments tended to utilise the selected processor to
maximum capacity, risking overheating and non-optimal
performance, we swapped the choice of CPU for the back-
ground processes and our benchmark system from time to
time.

4.3 Software

A system was designed and implemented to perform these
benchmarks. To support repeatable experiments, the sys-
tem can generate or import data sets. These data sets
are retained in a repository and can easily be accessed for
subsequent executions. The graphical user interface for
this system was created using the non-commercial version
of Qt 3.2.1. Our aim was to be able to record the per-
formance metrics of a selected implementation of an algo-
rithm. This was achieved by creating a distinct process
that is dedicated to the execution of the specific imple-
mentation of the algorithm with a known data set selected
from the repository of data sets.

Previously the time stamp counter (TSC) was widely used
to perform high-resolution timing. This is no longer the
case since technology that changes the frequency of the
CPU is in use in many high-end desktop PCs [25]. Fur-
thermore, when executing on systems with multiple CPUs,
and hibernating operating systems, the TSC cannot be re-

lied on to provide accurate results. For our benchmarking
we decided to take a bold step and implement an alterna-
tive strategy that would not try to eliminate these effects,
but rather incorporate them. In our opinion this tech-
nique, described here, enabled us to implement a platform
independent benchmarking system that produces realistic
measurements.

A Qt::QTime object contains a clock time expressed as
number of hours, minutes, seconds, and milliseconds. A
time stamp can be retrieved by reading the current time
from the system clock in 24-hour clock format using the
static currentTime() function. The execution time of a
process is calculated by measuring a span of elapsed time
with the help of start(), restart(), and elapsed() func-
tions provided in the Qt::QTime class.

Time is measured in milliseconds using the msec() func-
tion. The execution time of the process is measured by
signaling the moment all data has been read from the in-
put buffer as its starting point, and the moment the first
output character is produced as its finishing time. Ac-
cording to the Qt documentation, the accuracy of these
functions depends on the accuracy of the underlying op-
erating system. The operating system used in our case
(Windows Vista) reported at 15-millisecond accuracy [20].
The execution times recorded in our benchmarks ranged
from 109 to 623993 milliseconds. Therefore, the possible
loss of accuracy owing to the 15 millisecond granularity,
was deemed insignificant.

The process whose memory usage is to be measured com-
pletes its execution just before the output phase com-
mences. It is at this moment that the memory consump-
tion of the process is measured. The Qt method called

245



processIdentifier() returns a pointer to a struct con-
taining process information. Among others this struct
provides a handle that can be used to call a C++ func-
tion defined in the Process Status API <psapi.h>, which
in turn updates some memory counters related to the pro-
cess. The memory counters use bytes as their units of mea-
surement. From these memory counters, the peak working
set size was taken to represent the memory usage of the
process.

5. BENCHMARKING

5.1 Calibration

The test environment was calibrated before the perfor-
mance of the processes that implement the algorithm was
benchmarked. To do this each of our implemented pro-
grams were executed one hundred times with an empty
data set. Its memory usage was measured each time.
These data were analyzed to determine the memory over-
heads of these implementations.

The operating system allocated memory to the processed
in 4096 byte sized blocks. The smallest amount of mem-
ory blocks used by any of these processes was 327 blocks.
This was the memory allocated to the program that imple-
mented std::vector<char>. It used 327 blocks for 61%
of the runs with this program. For 38% of the runs of
this program, it used 328 blocks, and 329 blocks for the
remaining 1% of the runs. This is shown in the first row
of Table 1.

The programs that implemented std::vector<bool>, boost::dynamic_bitset

and bm::vector<> had a similar pattern of memory us-
age. For all these processes roughly 65% of the runs used
the lowest number of memory blocks recorded for that
specific process. However, the implementation of each of
these structures had a different base value. They respec-
tively needed 7, 9 and 12 additional memory blocks when
compared to the number of memory blocks used by the
program that implemented std::vector<char>. These
values are shown in a column labeled ∆. For example, the
program that implemented std::vector<bool> used 327
+ 7 = 334 memory blocks for 66% of its runs and similarly
335 blocks for 29% of its runs, and 336 blocks for 5% of
its runs.

The different memory usage pattern and large ∆-value of
the program using Qt::QBitArray can be explained by
the fact that this program is dependent on a pre-compiled
run time library that resides in a separate file as opposed
to the other programs that are self contained. Based on
these observations the base memory overhead for this ex-
perimental study was declared to be 327 memory blocks.

We assume that the additional memory blocks, repre-
sented by its ∆-value in each case is needed for algorithmic
enhancements, included in the program, to enable the ma-
nipulation of the data stored in the data structure. We
deem this additional memory to be part of the payload to
be accounted for when using the data structure.

5.2 Experimental Data

We performed a number of preliminary benchmarks with
data sets of different sizes and different densities and ob-
served that the relative performance of the different data
structures did not change significantly if data sets with
different densities were used. Therefore, we decided to
keep a fixed density for this benchmark.

Dahlberg [5] benchmarked transitive closure algorithms
with real world data. The sizes of her data sets ranged
from 88 × 88 to 987 × 987. These had densities ranging
from 0.2% to 3.4%. The average density of these data
sets was 1.1%. Our generated data was chosen to be in
the same range as the data used by Dahlberg in terms of
size and density.

Fifty synthetic data sets were generated, each representing
a two-dimentional array of bits. The smallest data set was
100× 100 and the largest 1000× 1000. All the bits in an
array were initialised to ‘0’, and then a simple algorithm
that uses the random function provided in the STL was
used to set random bits to ‘1’ until the array was 1.1%
filled. Five arrays of each size were generated. These data
sets were stored and used in our benchmark.

5.3 Performance Data

Each program was executed ten times with each of the
data sets, measuring both the CPU-time and memory us-
age for every run. The average over all the runs for each
data set size was taken for each program. The variation
of memory usage between different runs on the same data
set was similar to the variations that were observed dur-
ing calibration. The time performance was observed to
be particularly stable between different runs of a chosen
program on the same data set and with minor variations
between data sets. No outliers were observed with respect
to memory usage or performance times.

5.4 Time Performance

The compilation of the code used in the benchmarks was
done with level -O3 optimisation enabled. Turning on op-
timization when compiling, makes the compiler attempt
to improve the performance and/or code size at the ex-
pense of compilation time and possibly the ability to de-
bug the program. The highest level of optimisation for
the gcc compiler is turned on with the -O3 flag. It en-
ables all optimisations specified by the lower optimisation
levels as well as a number of additional ones. It will for
example integrate functions into their callers when their
body is smaller than expected function call code. It may
also move branches with loop invariant conditions out of
the loop, with duplicates of the loop on both branches.
Another common optimisation is to reorder the instruc-
tions of innermost loops achieving the overlap of different
iterations or to switch an inner and its outer loop when
the switch can potentially reduce cache misses [22].

Figure 2 shows the performance times of the process for
each of the selected data structures for arrays ranging from
100 × 100 to 1000 × 1000. Since the complexity of the
algorithm used in these benchmarks is O(n3log2n), one
expects to see exponential growth in performance time.
However, it is evident that the growth in performance time
of some of the used data structures are consistently worse

246



0

1

2

3

4

5

0 100 200 300 400 500 600 700 800 900 1000

S
ec
o
n
d
s

Dimension of Array

std:vector<bool>
std:vector<char>

bm:bvector<>
Qt:QBitArray

boost:dyn bitset

Figure 2: Time performance for arrays 100× 100 to 1000× 1000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700 800 900 1000

K
iB

Dimension of Array

Qt:QBitArray
std:vector<char>
boost:dyn bitset

std:vector<bool>
bm:bvector<>

Figure 3: Memory usage for arrays 100× 100 to 1000× 1000

247



than others.

The execution times achieved using std:vector<bool>

and std::vector<char> grows extremely fast for arrays
larger than 200× 200. Their performance times for larger
arrays are outside the scope of Figure 2. The implementa-
tion using std::vector<bool> took more than 10 minutes
to execute a 1000 × 1000 array, and the implementation
using std::vector<char> took almost 2.5 minutes.

The observed time performance of the implementation us-
ing bm:bvector<> is much more acceptable than the ex-
ecution times of the implementations respectively using
std::vector<bool> and std::vector<char>. However,
it is still not very usable for this application. Although
it succeeded to complete its calculation of the transitive
closure of a 1000× 1000 array in about 15 seconds on av-
erage, its performance is still much worse than the time
performance of the implementations using Qt::QBitArray

and boost::dynamic_bitset.

5.5 Memory Usage

Figure 3 shows the memory usage of the algorithm im-
plemented using each of the data-structures. The mem-
ory usage is shown for arrays 100 × 100 to 1000 × 1000.
The memory usage is measured in Kibibytes(KiB). Mem-
ory usage of more than 1.8 MiB is not shown. It is clear
that bm:bvector<> performed significantly worse than the
rest. The memory requirements for std::vector<bool>,
std::vector<char> and boost::dynamic_bitset are
very similar for small arrays and insignificantly small when
compared to the memory requirements of bm:bvector<>

and Qt::QBitArray. The apparently constant memory us-
age of Qt::QBitArray can be explained by the roughly 990
KiB it needs for algorithmic support. It seems as if most
of the actual data that is manipulated with this implemen-
tation fits within the memory that had to be allocated to
accommodate its algorithmic support. It can be observed
that at array size of 300 × 300 the Qt::QBitArray appli-
cation is gradually requiring more memory for the data
that can not be squeezed in the space allocated for its al-
gorithmic support. It seems as if the array data has an
influence on memory usage only for array sizes of 800 ×
800 and larger. Since the data used in these benchmarks
are of order O(n2) one expects to see quadratic growth in
memory usage which can be observed for all data struc-
tures. For std::vector<bool>, the growth is quadratic
too, although it seems to be almost linear on this scale.

6. DISCUSSION

The relative time performance of the programs that im-
plemented the data structures is shown per data structure
in Table 2. The position of each data structure when ma-
nipulating a 1000 × 1000 array is shown. 1 means the
program executed the fastest, and 5 means it executed
the slowest.

The relative memory usage of the programs that imple-
mented the data structures is shown per data structure in
Table 3. The position of each data structure when ma-
nipulating a 1000 × 1000 array is shown. 1 means the
program used the least memory, and 5 means it used the

Table 2: Relative time performance of the pro-
grams that implemented the data structures

Data Structure Rank

std::vector<bool> 5
std::vector<char> 4
boost::dynamic_bitset 1
Qt::QBitArray 2
bm::vector<> 3

most memory of these five.

Table 3: Relative memory usage of the programs
that implemented the data structures

Data Structure Rank

std::vector<bool> 1
std::vector<char> 3
boost::dynamic_bitset 2
Qt::QBitArray 4
bm::vector<> 5

The results of the bm:bvector<> were disappointing. Al-
though it maintained acceptable performance times, its
memory usage is exorbitant. In private e-mail conversa-
tion with a developer a BitMagic [15], this memory con-
sumption is attributed to meta data regarding the char-
acteristics of the vector that is warranted by impressive
gains when manipulating much larger vectors with large
portions that are very dense and other portions that are
very sparse. It is obvious that this data structure was
intended to be used in situations that are quite different
from our application.

The std::vector<bool> ranks first with respect to mem-
ory performance. This is testimony of its successful space
optimisation, achieved by storing the data in a format
where all the memory that is allocated is purely used to
store the data in its raw format without any meta infor-
mation, thus eliminating all possible memory overheads.
As a result, it ranks last with respect to time performance.
This shows that the space-time tradeoff is huge. Because
no meta information is stored, individual bits are accessed
programatically by unpacking the byte that contains the
bit that is accessed. Despite the impressive memory per-
formance of std::vector<bool>, its dismal time perfor-
mance renders it unusable in large-scale applications.

The std:vector<char> uses no data compression. Each
bit is stored in its own computer word, i.e 16 or 32 bits
depending on the architecture used. Respectively only
6.25% and 3.125% of the allocated memory carries signifi-
cant data for 16 bit and 32 bit architectures. This results
in very fast access times to individual bits. Because of this,
it performed well when compared to std::vector<bool>

in terms of execution time. However, owing to its wasteful
memory usage its memory usage for larger arrays grows
quite fast. Furthermore, when compared to the other data
structures its time performance ranks very low despite its
fast access to individual bits. This can be attributed to
the fact that there are no bit-wise manipulations defined
that can be used to manipulate whole vectors. This forces
the programmer to iterate through the vectors and apply
the required operations on the individual bits.

248



The Qt::QBitArray is a special byte array that can ac-
cess individual bits and perform bit-operations on entire
arrays of bits. Its implementation uses techniques simi-
lar to std::vector<bool> to compress and store data in
its raw format with minimal overhead and to gain access
to individual bits. However, it capitalises on the bitwise
operations that are defined on primitive data types to im-
plement the bitwise operations on whole arrays, result-
ing in achieving the best of both worlds. Consequently
it performed very well in terms of time. Its relatively
bad performance with regard to memory usage is contrary
to what would be expected when inspecting the code.
This anomaly can be explained in terms of how we de-
fined base memory usage. As stated in Section 5.1 we
include the memory allocated to the process, in addition
to the memory size that is used by the process implement-
ing std::vector<char>, to be part of the memory used
for data manipulation. Therefore this seemingly excessive
memory usage can be attributed to its larger process foot-
print owing to having to link to the entire Qt library. It
is expected that its memory consumption will come closer
to the other implementations, or even be more efficient,
when the data size grows large enough for this constant
larger footprint to be negligible.

The boost::dynamic_bitset uses template programming
in its constructors allowing the programmer to specify the
block size and an allocator. If not specified, the defaults
render the data structure that to a large extent resem-
bles std::bitset. However, it is much more versatile
because a bit-vector object of this class can be resized
at runtime because functions such as push_back(), ap-
pend() and resize() are defined. It also uses similar
techniques as std::bitset to implement all the bit-wise
operations. Because it stores the data in raw format with-
out much overhead its memory performance ranks high in
comparison with the other data structures. Furthermore,
because it capitalises on the operations that are defined
in std::bitset to implement its bit-wise operations, its
time performance ranks the highest of the data structures
that are discussed in this study.

7. CONCLUSION AND FUTURE WORK

We have shown that boost::dynamic_bitset is consid-
erably more efficient than most of the other implemen-
tations in terms of execution speed, while the implemen-
tation using std::vector<char> outperformed the other
implementations in terms of memory efficiency. Our re-
sults clearly illustrates the time-space tradeoff that is at
play when implementing software. We provide detailed
information that developers may use as guide for choos-
ing an appropriate C++ library for the implementation
dynamic bit-vectors.

To provide broader comparison of bit-vector implemen-
tations, these experiments should be repeated with more
bit-vector implementations such as those offered by [3, 10,
18] as well as others that may appear in the public domain
in the future.

The use of other algorithms that perform a wider variety of
bit-operations can potentially highlight more subtle differ-
ences between these bit-vector implementations. The use
of algorithms from different application domains such as
graphics, near-realtime network and cluster management,

statistical computing and others may shed light on the
relative usefulness of the different implementations as it
may differ from one application domain to the other.

The role of the operating system, the hardware and the
compiler should also be investigated. Different CPU types
as well as variations in operating systems may have an
impact. Furthermore, the performance of implementa-
tions using the different libraries may be influenced by
the choice and version of compiler. Therefore these ex-
periments should be repeated on different platforms and
by using different compilers.

249



8. REFERENCES

[1] J. Allsop, A. Meredith, and G. Prota. Proposal to
add a Dynamically Sizeable Bitset to the Standard
Library Technical Report. Revision 1.
http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2006/n2050.pdf, June 2006. [Online:
Accessed 2009/07/31].

[2] J. J. Baker. A note on multiplying Boolean matrices.
Communications of the ACM, 5(2):102, 1962.

[3] S. Beyer. Bit::Vector. http://webscripts.
softpedia.com/script/Development-Scripts-js/

C-C-Library/Bit-Vector-26508.html, 2009.
[Online: Accessed 2009/08/15].

[4] J. Blanchette and M. Summerfield. C++ GUI
programming with Qt 4. Pearson Educational, Upper
Saddle River, NY, 2006.

[5] M. Dahlberg. Efficient algorithms for computing
transitive closure in cwb: Implementation and
comparison of several variations. Master’s thesis,
Swedish Institute of Computer Science, Sweden,
September 1991.

[6] B. Dawes. Proposal for a C++ Library Repository
Web Site.
http://www.boost.org/users/proposal.pdf, May
1998. [Online: Accessed 2009/07/31].

[7] B. Dawes. Boost Formal Review Process.
http://www.boost.org/community/reviews.html,
2000. [Online: Accessed 2009/07/31].

[8] B. Dawes. Library Issue 96: Fixing vector<bool>.
http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2007/n2160.html, January 2007. [Online:
Accessed 2009/07/31].

[9] E. W. Dijkstra. A discipline of programming.
Prentice-Hall, Englewood Cliffs, N.J., 1976.

[10] M. Dipperstein. ANSI C and C++ Bit
Manipulation Libraries.
http://michael.dipperstein.com/bitlibs/, June
2008. [Online; accessed 5-September-2009].

[11] H. Hinnant. C++ Standard Library Active Issues
List (Revision R67). http://www.open-std.org/
JTC1/SC22/WG21/docs/papers/2009/n2948.html,
September 2009. [Online: Accessed 2010/04/09].

[12] H. Hinnant. C++ Standard Library Closed Issues
List (Revision R68). http://www.open-std.org/
JTC1/SC22/WG21/docs/papers/2009/n3013.html,
November 2009. [Online: Accessed 2010/04/09].

[13] ISO/IEC. ISO/IEC 14882:2003 - Programming
languages – C++. ISO, Geneva, Switzerland, 2003.

[14] D. Kalev. What You Should Know about
vector<bool>. http://www.informit.com/guides/
content.aspx?g=cplusplus&seqNum=98, March
2004. [Online: Accessed 2009/07/30].

[15] A. Kuznetsov. Re: Experiments with BitMagic.
private e-mail communication
<anatoliy kuznetsov@yahoo.com>, September 2009.

[16] A. Kuznetsov, M. Shemanarev, I. Tolstoy, E. Lewis,
and O. Khovayko. BitMagic.
http://bmagic.sourceforge.net/, n.d. [Online:
Accessed 2009/07/31].

[17] S. D. Meyers. Effective STL: 50 Specific Ways to
Improve Your Use of the Standard Template Library
. Professional Computing Series. Addison-Wesley,
Boston, 4 edition, 2004.

[18] H. Mostafa. Bits Array Encapsulation. http:
//www.codeproject.com/KB/cpp/BitArray.aspx,
December 2004. [Online; accessed
5-September-2009].

[19] Nokia Corporation, Inc. Qt - A cross-platform
application and UI framework.
http://www.qtsoftware.com/, n.d. [Online:
Accessed 2009/07/31].

[20] J. Reesig. Accuracy of JavaScript Time. http://
ejohn.org/blog/accuracy-of-javascript-time/,
November 2008. [Online: Accessed 2009/08/18].

[21] R. Rivera. Boost Version History.
http://www.boost.org/users/history/, n.d.
[Online: Accessed 2009/07/31].

[22] R. M. Stallman. Using the GNU Compiler
Collection. http://gcc.gnu.org/onlinedocs/gcc.pdf,
2008. Published by GNU Press [Online; accessed
05-September-2009].

[23] C. Strauss, E. Boyd, and K. Marshall. MinGW -
Minimalist GNU for Windows.
http://sourceforge.net/projects/mingw/, 2008.
[Online: Accessed 2009/07/31].

[24] H. Sutter. vector<bool>: More problems, better
solutions.
http://www.gotw.ca/publications/N1211.pdf,
1999. [Online: Accessed 2009/07/30].

[25] C. Walbourn. Game Timing and Multicore
Processors. http://msdn.microsoft.com/en-us/
library/ee417693(VS.85).aspx, 2005. [Online;
accessed 12-Nov-2009].

[26] S. Warshall. A Theorem on Boolean Matrices.
Journal of the ACM, 9(1):11–12, 1962.

250


