Add std::priority queue method to move the top element from it

Document #:

Date: 2026-01-17

Project: Programming Language C++
Audience: LEWG

Reply-to: Aleksei Sidorin

<alexey.v.sidorin@yandex.ru>

Contents

1 Introduction 1
2 Motivation and Scope 1
3 Impact On the Standard 2
4 Design decisions 2
5 Technical specification 2
6 Reference implementation 3
7 Acknowledgments 3
8 Related work 3
9 References 3

1 Introduction

Unlike other containers, std::priority_queue doesn’t allow its users to move elements out of it. This
asymmetry causes performance hits and limits the type usage. I propose adding a corresponding method to
std: :priority_queue backed by a set of freestanding functions in <algorithm> header.

2 Motivation and Scope

In order to extract the top element from std::priority_queue, STL users have to write code similar to the
following:

auto x = queue.top(); // Copy constructor or copy assignment.
queue.pop() ;

Unfortunately, we cannot move a top value from the queue because top() is of const_reference type ([N4950],
Section 24.6.7.4 [priqueue.members]).

The first problem is that this can cause a performance hit if the value type is expensive to copy (a structure
containing large strings, allocating copy constructors, etc.).

The second problem is that this also makes impossible to use std: :priority_queue with move-only types like
std::unique_ptr.


mailto:alexey.v.sidorin@yandex.ru
https://wg21.link/n4950

I’ve made a search in chromium sources showing that almost all heap structure usage have a similar pattern:

std: :pop_heap(queue.begin(), queue.end());
xevent = std::move(queue.back());
queue . pop_back() ;

(https://github.com/search?q=repo%3Achromium%2Fchromium%20pop__heap&type=code)
I think this clearly indicates that STL can have a better interface here.

Another issue with top()& pop() approach is that pop() uses std::pop_heap() + c.pop_back() call pair
internally. And std: :pop_heap() is required to move the top element to the sequence end. This can introduce
stores hard to elide by compilers. For example, in https://godbolt.org/z/r7KK7MYzc we can find such a store
in assembly line 13 left even with -03.

Therefore, I propose adding an std: :priority_queue method behaving like pseudo-code below:
T extract_top() {

T val = std::move_if_noexcept(container.front());

pop Q) ;

return val;

}

The method is named extract_top() in this proposal, but the exact naming can be a subject for discussion.

In addition, I propose adding freestanding <algorithm> functions: std::extract_heap_top() and
std::ranges: :extract_heap_top(). These functions will return the queue top value and remove it
from the queue with restoring heap property of the data structure. Unlike std: :pop_heap(), these functions
leave the last range element in an unspecified state, so handling range length after calling them lies on users.

3 Impact On the Standard

The change is a pure library extension which can be implemented with existing language features and current
C++ compilers.

4 Design decisions

A common discussion point for this proposal and for its predecessors was exception safety. This paper proposes to
apply move_if_noexcept behaviour when extracting the top value, so the data structure will keep its consistent
state even if move constructor can throw.

It is often pointed that the priority_queue internal bookkeeping also involves non-trivial operations, but this
proposal does not affect this maintenance, so we do not discuss it.

5 Technical specification

— Add an entry into chapter 27.8.8 [alg.heap.operations]: [extract_top.heap]

template <class RandomAccessIterator>
constexpr iterator_traits_t<RandomAccessIterator>::value_type
extract_heap_top(RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
constexpr iterator_traits_t<RandomAccessIterator>::value_type

extract_heap_top(RandomAccessIterator first, RandomAccessIterator last, Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,


https://github.com/search?q=repo%3Achromium%2Fchromium%20pop_heap&type=code
https://godbolt.org/z/r7KK7MYzc

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr iterator_traits<I>::value_type
ranges: :extract_heap_top(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr iterator_traits<iterator_t<R>>::value_type
ranges: :extract_heap_top(R&& r, Comp comp = {}, Proj proj = {});

1. Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.

2. Preconditions: The range [first, last) is a valid non-empty heap with respect to comp and proj. For
the overloads in namespace std, RandomAccessIterator meets the Cppl7ValueSwappable requirements
(16.4.4.3) and the type of *first meets the Cpp17MoveConstructible (Table 31) and Cpp17MoveAssignable
(Table 33) requirements.

3. Effects: Replaces the value in the location first with the value in the location last - 1 and makes
[first, last - 1) into a heap with respect to comp and proj.

4. Returns: the initial value in the location first.

5. Complexity: At most 2 log(last - first) comparisons and twice as many projections.

— Add an entry into chapter 24.6.7.4 [priqueue.members]:

T extract_top();

Effects: As if by:

auto result = extract_heap_top(c.begin(), c.end(), comp);
c.pop_back();
return result;

6 Reference implementation

I made a reference implementation of the proposed additions in 1ibc++. The diff is available as a Github pull
request and a branch in my repository copy.

7 Acknowledgments

Thanks to:

— Anton Polukhin for initial proposal proof-read
— Arthur O’'Dwyer for suggesting move_if_noexcept

8 Related work

https://lists.isocpp.org/std-proposals/2021/02/2390.php - a similar proposal. No actions were taken after
publishing it to std-proposals.

https://www.open-std.org/jtcl /sc22/wg21/docs/papers/2024/p3182r1.html proposes adding pop_value and
push_value methods to many STL containers. Unfortunately, the author (Brian Bi) confirmed that it is stalled.
9 References

[N4950] Thomas Képpe. 2023-05-10. Working Draft, Standard for Programming Language C++.
https://wg21.link /n4950


https://github.com/a-sid/llvm-project/pull/1/files#diff-783b3bde6fda24a0c9d16268ae15eb7539ffce84b91c22d0a742861de5164702
https://github.com/a-sid/llvm-project/pull/1/files#diff-783b3bde6fda24a0c9d16268ae15eb7539ffce84b91c22d0a742861de5164702
https://github.com/a-sid/llvm-project/tree/extract-top-proposal
https://lists.isocpp.org/std-proposals/2021/02/2390.php
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3182r1.html
https://wg21.link/n4950

	Introduction
	Motivation and Scope
	Impact On the Standard
	Design decisions
	Technical specification
	Reference implementation
	Acknowledgments
	Related work
	References

