Conditional final class-virt-specifier

Metrics

Document Ne:
Date:
Project:

Audience:

Reply-to:

Contents

Metrics
Contents
Proposal
Syntax
Motivation
Examples
Requirements
Disadvantages
Advantages

Wording

Proposal

ISO C++23 Standard — Feature Proposal

Draft RO
08.07.2020
ISO/IEC JTC 1/SC 22/WG 21/C++

Core Working Group
Library Working Group

Pawet Benetkiewicz <isocpp@benio.me>

Make final class-virt-specifier conditional.

Conditional final class-virt-specifier ISO C++23 Standard — Feature Proposal

i h W W W NN

p. 1

Syntax

Current Proposed
final final (1)
final (expression) (2) (since C++23)
final < type-parameter-key name(optional) > (expression) (3) (since C++23)
1) Sameas final (true)
2-3) if expression evaluates to true upon final conditioning, the program is ill-formed.

expression Sequence of logical operations and operands that
specifies negation of requirements on base class.

type-parameter-key Either typename or class. There is no difference between
these keywords in context of final conditioning declaration.

name Temporary identifier corresponding to derived class upon final
conditioning. It's optional to keep consistency with templates.

In case (2), every occurrence of name (if any) will be interpreted as a derived class
reference in final conditioning. If name refers to another class, program is ill-formed.

In cases (2, 3), final conditioning will be performed in the context of deriving class,
evaluating expression. If evaluation of final conditioning is true, program is ill-formed.

Motivation

Conditioning inheritance was widely requested for many years, but it was not possible to add such
feature until C++20, which introduced constraints — constraint-logical-or-expression allows making

final class-virt-specifier conditional, with optional help of a temporary identifier corresponding to
derived class upon final conditioning — evaluation of constraint in the context of class declaration.

This proposal is very similar to PO892R2 (C++20) "explicit(bool)". Both proposals adds conditional
expression to specifier with special meaning. Two main differences in syntax are:

1. final requires additional temporary replacement for a derived class.
2. final uses constraint-logical-or-expression while explicit uses constant-expression.

Conditional final class-virt-specifier shall heavily reduce amount of hard to deal with common
problems with inheriting invalid, outdated or incompatible: interfaces, components and extensions.

This proposal adds feature to heavily increase compatibility correctness by inheritance constraints.

Conditional final class-virt-specifier ISO C++23 Standard — Feature Proposal Draft RO p.2

Examples

Conditional final class-virt-specifier allows i.a.:
1. Restricting inheritance of interface for it's implementation only.
class foo_impl {};

class foo_interface final<class B>(!same_as<B, foo_impl>) {};
// foo_interface can be inherited from foo_impl class only.

2. Restricting inheritance of component for compatible classes only.

class enemy_component final<class B>(!derived_from<B, enemy>) {};
// enemy_component can be inherited from classes that inherits from enemy only.

3. Ensure that version of a derived class is not less than version of base class.

class extension final<class B>(B::api_version < extension::api_version) {};
// extension can be inherited from base class with not less api version only.

Requirements

1. Library: Small change needs to be done to is_final type trait, to accept either one or two
template arguments, as specified in Wording: 8 7 - 9 of this proposal (§ 20.15.2 [meta.type.synop],
§ 20.15.4.3: Table 49 [tab:meta.unary.prop], 8 20.15.6.2: Table 51 [tab:meta.rel]).

2. Compiler: Compilers will have to implement final conditioning procedure: up to one temporary
template argument that refers to a derived class, and a constraint expression evaluation in the
context of derived class declaration. Fortunately, this should be trivial up to very easy since we got
concepts in C++20.

Disadvantages

None.

Conditional final class-virt-specifier ISO C++23 Standard — Feature Proposal Draft RO p.3

Advantages

1. Similarity: Proposed syntax for conditional final class-virt-specifier combines syntaxes of
well-known template declaration and two other specifiers: noexcept and explicit:

conditional final class-virt-specifier:
final <class B> (expression)

template declaration:
template<classT>

other specifiers with special meanings:

noexcept (expression)
explicit (expression)

2. Design tradeoffs: None.

3. Compatibility: Legacy code will be fully compatible with a proposed syntax. In order to keep
backwards compatibility of modern code with syntax from before this proposal, we can take use
from __cpp_lib_is_final support macro and define a new, simply one:

#if defined(__cpp_lib_is_final) && __cpp_lib_is_final >= 262007L
#define FINAL(...) final(__VA_ARGS__)

#else
#define FINAL(...)

#endif

Conditional final class-virt-specifier ISO C++23 Standard — Feature Proposal Draft RO p.4

Wording

1. In§11.1.1 [class.pre] and A.8 [gram.class], add conditional final:

class-virt-specifier:

final final-clause

final-clause:

opt

final-head,, (constraint-logical-or-expression)

final-head:

< type-parameter-key identifier,, >

2. In811.1.5 [class.pre], change first paragraph:

If a class is marked with the class-virt-specifier that begins with final identifier and it appears as

a class-or-decltype in a base-clause, then the program is ill-formed unconditionally if there is no
final-clause in class-virt-specifier of this class, or a final conditioning will be issued [Note: See
below. — end note], yielding program ill-formed if constraint fails. Whenever a class-key is

followed by a class-head-name, the identifier final (optionally followed by a final-clause), and a
colon or left brace, final is interpreted as beginning of a class-virt-specifier.

3. Change numbering of sections 8 11.1.6-7 to § 11.1.7-8 [class.pre].
After 8 11.1.5 [class.pre], add new section (8 11.1.6) with the following content:

If final-head with identifier appears in a final-clause, then every occurrence of identifier must be

interpreted as a derived class reference in final conditioning. If such identifier already refers to a

class, the program is ill-formed. Otherwise, a final conditioning will be performed, evaluating

constraint-logical-or-expression of issuing final-clause and yielding result of evaluated constraint.
[Note: Program is ill-formed if evaluation of final conditioning is true. — end note]

4. In§11.1.5 [class.pre], add two line breaks and the following code to the end of an example:

struct D final<class B>(!derived_from<B, E>) {};
// struct D can be derived only from classes that derives from E

struct E {};
struct F : E {};
struct G {};

struct F : D {};
struct G : D {};

Conditional final class-virt-specifier

// OK: F derives from E
// ill-formed: G does not derive from E

ISO C++23 Standard — Feature Proposal Draft RO

p.5

5. In § 16.5.5.12.4 [derivation], change first sentence:

All types specified in the C++ standard library shall not be unconditionally non-final types
unless otherwise specified.

6. In § 17.3.2 [version.syn], change line with __cpp_lib_is_final:

#define __cpp_lib_is_final 201420027L // also in <type_traits>

7. In 820.15.2 [meta.type.synop], change template is_final_v:

template<class...>
inline constexpr bool is_final_v;
template<class T>
inline constexpr bool is_final_v<T> = is_final<T>::value;
template<class Base, class Derived>
inline constexpr bool is_final_v<Base, Derived> = is_final<Base, Derived>::value;

8. In § 20.15.4.3 [meta.unary.prop], modify Table 49 [tab:meta.unary.prop], changing first sentence
in Condition colum of row with template<class T> struct is_final Template:

T is a class type marked with the class-virt-specifier that begins with final ([class.pre]). [Note:
is_final has specializations for both unary and relation types. — end note]

9. In § 20.15.6.2 [meta.rel], add a row to Table 51 [tab:meta.rel]:

Template Condition Comments

template<class Base, class Derived> | Derived cannot derive from | Every template
struct is_final<Base, Derived>; Base ([class.pre]). [Note: argument that is a
is_final has specializations | class type, shall be a
for both unary and relation | complete type.
types. — end note]

Conditional final class-virt-specifier ISO C++23 Standard — Feature Proposal Draft RO p. 6

