
Document Number: PxxxxR0

Title: Timed lock algorithms for multiple lockables

Author: Ted Lyngmo <ted@lyncon.se>

Audience: LEWG, LWG

Date: 2025-08-27

Project: ISO/IEC JTC1/SC22/WG21

1. Introduction
C++11 introduced std::lock and std::try_lock (and C++17 instroduced

std::scoped_lock) to simplify deadlock-free acquisition of multiple lockables. These

algorithms support BasicLockable and Lockable objects, but there is currently no facility for

timed acquisition of multiple TimedLockable objects.

Users who require timeout-based locking of multiple mutexes must implement their own deadlock-
avoidance algorithm, typically via try_lock(), unlock(), and retry. This is error-prone,

verbose, and inconsistent with the existing standard library facilities.

This paper proposes two new algorithms:

template <class Clock, class Duration, class... Ls>
[[nodiscard]] bool
try_lock_until(const std::chrono::time_point<Clock, Duration>& tp, Ls&... ls);

template <class Rep, class Period, class... Ls>
[[nodiscard]] bool
try_lock_for(const std::chrono::duration<Rep, Period>& rel_time, Ls&... ls);

These extend the std::lock family of functions to timed lockables, enabling consistent and safe

use of multiple timed mutexes.

2. Impact on the Standard
• Pure library extension.

• No changes to the core language.

• Minimal implementation burden: can be implemented using existing lock-style algorithms

plus timeout handling.

• ABI impact: introduction of two new function templates in <mutex>.

3. Design Rationale
• Free functions: Consistent with std::lock and std::try_lock.

• Parameter pack form (Ls...): Matches existing multi-lock algorithms; avoids forcing

tuple/range usage.

• Deadlock avoidance: As with std::lock, the algorithm is required not to deadlock, but

the specific strategy is left unspecified.

• Exception safety: If any call to try_lock(), try_lock_for(), or

try_lock_until() throws, all previously locked mutexes are released via unlock().

• Timeout semantics: Mirrors try_lock_for() and try_lock_until() in

TimedLockable.

4. Proposed Wording (relative to N5008)
In 32.6.6, Generic locking algorithms [thread.lock.algorithm], after point 5:

template <class Clock, class Duration, class... Ls>
 [[nodiscard]] bool
 try_lock_until(const chrono::time_point<Clock, Duration>& abs_time,
 Ls&... ls);

6. Preconditions: Each template parameter type in Ls meets the Cpp17TimedLockable

requirements.

7. Effects: Attempts to obtain ownership of all arguments via repeated calls to
try_lock_until(), try_lock_for(), try_lock() or unlock() on each argument.

The sequence of calls does not result in deadlock, but is otherwise unspecified.

• If all locks are acquired before abs_time has passed, returns true.

• If the time point abs_time is reached before all locks are acquired, releases any locks it

holds and returns false.

If a call to try_lock_until(), try_lock_for() or try_lock() throws an exception,

unlock() is called on any object locked by this algorithm prior to the exception, and the

exception is rethrown.

8. Returns: true if all locks were obtained, otherwise false.

template <class Rep, class Period, class... Ls>
 [[nodiscard]] bool
 try_lock_for(const chrono::duration<Rep, Period>& rel_time, Ls&... ls);

9. Preconditions: Each template parameter type in Ls meets the Cpp17TimedLockable

requirements.

10. Effects: Equivalent to:

return try_lock_until(chrono::steady_clock::now() + rel_time, ls...);

11. Returns: As if by try_lock_until.

5. Example
std::timed_mutex m1, m2;

if (std::try_lock_for(100ms, m1, m2)) {
 // success
 std::lock_guard<std::timed_mutex> lg1(m1, std::adopt_lock);
 std::lock_guard<std::timed_mutex> lg2(m2, std::adopt_lock);
 // ...
} else {
 // failed to acquire within timeout
}

6. Implementation Experience
• Existing implementations of std::lock already use a deadlock-avoidance algorithm.

Using the gcc implementation as an example, instead of locking one with m.lock() and

using std::try_lock on the rest, the algorithm could start locking one with

m.try_lock_until(tp).

Example at Compiler Explorer

7. Prior Art
• ...

8. Acknowledgments
• ...

https://godbolt.org/z/1ePMqzdre

9. References
• N5008: Working Draft, Programming Languages — C++ (C++26).

	Document Number: PxxxxR0
	Title: Timed lock algorithms for multiple lockables
	Author: Ted Lyngmo <ted@lyncon.se>
	Audience: LEWG, LWG
	Date: 2025-08-27
	Project: ISO/IEC JTC1/SC22/WG21

	1. Introduction
	2. Impact on the Standard
	3. Design Rationale
	4. Proposed Wording (relative to N5008)
	5. Example
	6. Implementation Experience
	7. Prior Art
	8. Acknowledgments
	9. References

