
Subtract With Carry Engine Correction Proposal
Visual inspection of various features of the framework

Document #: D0000R1
Date: 2025-04-28
Project: Programming Language C++
Audience: Library Evolution

Library
Revises: D0000R0
Reply-to: Author Juan Lucas Rey

<juanlucasrey@gmail.com>

1 Introduction
This proposal addresses a flaw in the current behavior of subtract_with_carry_engine, whereby distinct
internal states can produce identical sequences of outputs. This state degeneracy leads to surprising and non-
intuitive behavior, violating expected properties such as equality of random engines based on observable output.

2 Motivation and Problem Description
The subtract_with_carry_engine maintains an internal state sequence along with a carry bit. Due to the
mathematical structure of the engine, it is possible for two different internal states to produce identical sequences
of random numbers.

This phenomenon indicates an over-parametrization of the state: distinct internal representations that are
functionally equivalent with respect to output.

Consequently, two engine instances rng1 and rng2 may produce identical random sequences while rng1 != rng2
according to the == operator.

An example of this problematic behavior is shown in this test case.

Such behavior is problematic for users expecting engine equality to reflect output behavior and can lead to
incorrect assumptions or errors when engines are used in associative containers or algorithm comparisons.

3 Proposed Resolution
We propose clarifying that engines that generate identical sequences should be considered equal, and where
feasible, that the internal state should normalize itself after a full cycle or by lazy canonicalization during
comparisons.

Specifically:

— Define a “canonical form” of the internal state after generating a full cycle.
— Specify that two engines are == if their observable sequences are identical.
— Optionally recommend that implementations normalize state representations after output cycles to facili-

tate efficient equality comparison.

4 Impact on Existing Implementations
This change primarily impacts engine comparison operations and serialization/deserialization use cases.

1

mailto:juanlucasrey@gmail.com
https://github.com/juanlucasrey/std_random_flaws/blob/main/main.cpp#L51


Engines already relying purely on observable sequences would not be affected. Implementations that rely on
byte-for-byte internal state equality would require adjustment.

No impact is expected on random number output sequences themselves.

5 References
— Reference test case highlighting the issue

2

https://github.com/juanlucasrey/std_random_flaws/blob/main/main.cpp#L51

	Introduction
	Motivation and Problem Description
	Proposed Resolution
	Impact on Existing Implementations
	References

