
Philox Engine Correction Proposal
Ensuring Consistent Interpretation of the w Template Parameter

Document #: D0000R1
Date: 2025-04-26
Project: Programming Language C++
Audience: Library Evolution

Library
Revises: D0000R0
Reply-to: Author Juan Lucas Rey

<juanlucasrey@gmail.com>

1 Introduction
Several random number engine classes in the C++ Standard Library make use of a w template parameter to
define a “word size.” In particular:

— mersenne_twister_engine
— subtract_with_carry_engine
— philox_engine

Each engine’s documentation describes w as controlling the width, in bits, of the values it produces. In all three
cases, the engine’s max() member function returns a static value equal to 2𝑤 − 1.

However, in philox_engine, the current specification allows the generation of values greater than 2𝑤 − 1 under
certain circumstances, violating the expected bound implied by max().

2 Motivation and Problem Description
Consider the following instantiation of philox_engine:
using custom_philox = philox_engine<

std::uint_fast32_t, 31, 4, 10,
0xD2511F53, 0x9E3779B9, 0xCD9E8D57, 0xBB67AE85

>;

Here, w = 31, meaning that max() equals 231 − 1. Nevertheless, the engine, as currently specified, can produce
values exceeding this limit, due to the size of the multiplier constants and the absence of modular reduction
within the algorithm.

This inconsistency breaks the guarantees expected from the w parameter and can lead to surprising and erroneous
behavior in client code relying on the specified output range.

3 Design Alternatives
Two solutions were considered:

3.1 A. Constrain multiplier constants (M_k) to fit within [0, 2𝑤 − 1]
Require that each multiplier constant be no greater than 2𝑤 − 1. This solution would limit the possible choice
of multipliers but ensure range compliance.

1

mailto:juanlucasrey@gmail.com


3.2 B. Apply modular reduction to products during computation
Modify the algorithm so that all products involving multipliers are reduced modulo 2𝑤 immediately after mul-
tiplication. This maintains full generality in choosing constants, ensures correctness, and matches the behavior
of similar engines.

We recommend Solution B.

4 Proposed Wording
The following changes are relative to the working draft of the C++ Standard, section [rand.eng.philox].

4.1 Modifications to philox_engine description
Change the description of the computation in philox_engine::operator() (from its current form) to the
following:

Each round consists of a sequence of calculations, where for each 𝑘 in [0, 𝑛):
— Compute 𝑧𝑘 = (𝑀𝑘 × 𝑥𝑘′) mod 2𝑤, where 𝑥𝑘′ denotes a selected component of the state.
— Update each state component according to the specified permutation and addition of constants.

All intermediate and final results are reduced modulo 2𝑤.

4.2 Modifications to philox_engine remarks
Add a new remark:

[Note: Applying modular reduction after each multiplication guarantees that all generated values are within
the range [0, 2𝑤 − 1], as implied by max(). — end note]

5 Impact on Existing Implementations
Implementations conforming to the current wording but not applying modular reduction may observe behavioral
changes for certain engine instantiations with 𝑤 < 32 (or 𝑤 < 64, depending on UIntType). These changes are
deemed desirable to ensure compliance with the Standard’s stated bounds.

No existing usage of standard Philox configurations (e.g., philox4x32) is affected.

6 Acknowledgements
Thanks to discussions within Library Evolution Working Group members for feedback and insights.

7 References
— Random Number Generation Standardization Papers, N3551, N3552
— Philox Design: Random123 library documentation

2


	Introduction
	Motivation and Problem Description
	Design Alternatives
	A. Constrain multiplier constants (M_k) to fit within [0, 2^w-1]
	B. Apply modular reduction to products during computation

	Proposed Wording
	Modifications to philox_engine description
	Modifications to philox_engine remarks

	Impact on Existing Implementations
	Acknowledgements
	References

