
Linear Congruent Engine Correction Proposal
Clarifying Output Range and Template Parameters

Document #: D0000R1
Date: 2025-04-28
Project: Programming Language C++
Audience: Library Evolution

Library
Revises: D0000R0
Reply-to: Author Juan Lucas Rey

<juanlucasrey@gmail.com>

1 Introduction
This proposal highlights and addresses an inconsistency in the linear_congruential_engine regard-
ing the specification of its output width compared to other engines like mersenne_twister_engine,
subtract_with_carry_engine, and philox_engine.

2 Motivation and Problem Description
Unlike mersenne_twister_engine, subtract_with_carry_engine, and philox_engine, the linear_congruential_engine
does not include a w template parameter specifying the number of significant bits in its output.

As a result, instantiations such as:
std::linear_congruential_engine<std::uint_fast32_t, a, c, m>

yield output ranges that are implementation-dependent based on the actual width of UIntType.

This does not alter the sequence of numbers generated internally but affects how the numbers are interpreted
by distributions.

For example, the behavior of std::uniform_real_distribution depends on the range defined by engine.max().
Differences in the effective number of bits between implementations can therefore lead to different generated
floating-point numbers, despite using identical seeds and parameters.

An illustration of this issue is provided in this test case, where different platforms produce different uniformly
distributed real numbers.

3 Proposed Resolution
We propose introducing an optional w template parameter to linear_congruential_engine, defaulting to the
full bit width of UIntType if unspecified.

More specifically:

— Define w as the number of significant bits in the generated output.
— Specify that engine.max() should correspond to 2𝑤 − 1.
— If w is omitted, it should be automatically set to the bit width of UIntType.

This change would: - Align linear_congruential_engine with other random engines regarding output width
specification. - Enable portable behavior across implementations. - Ensure compatibility with the expectations
of standard distributions.

1

mailto:juanlucasrey@gmail.com
https://github.com/juanlucasrey/std_random_flaws/blob/main/main.cpp#L86


4 Impact on Existing Implementations
Existing code that does not explicitly use a w parameter would remain valid. The observable behavior (output
sequences) for integer types would not change, but floating-point distribution outcomes could be stabilized across
platforms.

5 References
— Reference test case highlighting the issue
— cppreference page on linear_congruential_engine

2

https://github.com/juanlucasrey/std_random_flaws/blob/main/main.cpp#L86
https://en.cppreference.com/w/cpp/numeric/random/linear_congruential_engine

	Introduction
	Motivation and Problem Description
	Proposed Resolution
	Impact on Existing Implementations
	References

