Linear Congruent Engine Correction Proposal Clarifying Output Range and Template Parameters

Document #:	D0000R1
Date:	2025-04-28
Project:	Programming Language C++
Audience:	Library Evolution
	Library
Revises:	D0000R0
Reply-to:	Author Juan Lucas Rey
	<juanlucasrey@gmail.com></juanlucasrey@gmail.com>

1 Introduction

This proposal highlights and addresses an inconsistency in the linear_congruential_engine regarding the specification of its output width compared to other engines like mersenne_twister_engine, subtract_with_carry_engine, and philox_engine.

2 Motivation and Problem Description

Unlike mersenne_twister_engine, subtract_with_carry_engine, and philox_engine, the linear_congruential_engine does not include a w template parameter specifying the number of significant bits in its output.

As a result, instantiations such as:

std::linear_congruential_engine<std::uint_fast32_t, a, c, m>

yield output ranges that are **implementation-dependent** based on the actual width of UIntType.

This does not alter the sequence of numbers generated internally but affects **how the numbers are interpreted by distributions**.

For example, the behavior of std::uniform_real_distribution depends on the range defined by engine.max(). Differences in the effective number of bits between implementations can therefore lead to different generated floating-point numbers, despite using identical seeds and parameters.

An illustration of this issue is provided in this test case, where different platforms produce different uniformly distributed real numbers.

3 Proposed Resolution

We propose introducing an optional w template parameter to linear_congruential_engine, defaulting to the full bit width of UIntType if unspecified.

More specifically:

- Define **w** as the number of significant bits in the generated output.
- Specify that engine.max() should correspond to $2^w 1$.
- If w is omitted, it should be automatically set to the bit width of UIntType.

This change would: - Align linear_congruential_engine with other random engines regarding output width specification. - Enable portable behavior across implementations. - Ensure compatibility with the expectations of standard distributions.

4 Impact on Existing Implementations

Existing code that does not explicitly use a w parameter would remain valid. The observable behavior (output sequences) for integer types would not change, but floating-point distribution outcomes could be stabilized across platforms.

5 References

- Reference test case highlighting the issue
- cppreference page on linear_congruential_engine