
constexpr for std::chrono::system_clock
Document #: P0000R0
Date: 2025-02-25
Project: Programming Language C++
Audience: Library Evolution Working Group (LEWG)
Reply-to: Nikolaos D. Bougalis

<nikb@bougalis.net>

1 Revision History

Rev Date Changes
P0000R0 2025-02-25 Initial version

2 Introduction
This paper proposes introducing a compile-time usable clock by making std::chrono::system_clock::now(),
std::chrono::system_clock::from_time_t(), and std::chrono::system_clock::to_time_t() callable in
constant evaluation contexts by marking them constexpr. This would allow make it possible for developers
to use the familiar, expressive and safe std::chrono toolkit to measure durations, generate time_points and
durations and make it possible to implement functionality that is otherwise not available without the use of
third-party tools and non-portable solutions.

3 Motivation and Scope
3.1 Motivating Examples
3.1.1 Time-Based UUIDs

One use case would be for generating v1 or v7 UUIDs at compile time. Doing this now means either generating
UUIDs using a tool (e.g. Microsoft’s uuidgen.exe) manually or as part of the build process, or writing macros
that use the C preprocessor to attempt to generate UUIDs during the preprocessing pass.

With this proposal, the following would be possible:
constexpr uuid_t generate_uuid(int version, std::chonoe::system_clock::time_point tp)
{

// ... implementation omitted
}

constexpr auto uuid1 = generate_uuid(1, std::chrono::system_clock::now());
constexpr auto uuid2 = generate_uuid(2, std::chrono::system_clock::now());

3.1.2 Additional Use Cases

— Automatic time-based seeding of compile-time random number generators
— Compile-time generation of build timestamps for versioning
— Simplified testing of time-dependent code
— Troubleshooting/debugging compile-time code bottlenecks

1

mailto:nikb@bougalis.net
https://datatracker.ietf.org/doc/html/rfc9562

3.2 Impact On the Standard
This proposal suggests a pure library extension that does not break existing code. It adds constexpr to existing
functions without changing their behavior in runtime contexts.

3.2.1 Core Language Impact

This proposal does not require core language changes. The existing constant evaluation rules adequately support
the proposed functionality.

3.2.2 Library Impact

The changes are limited to adding constexpr to the declarations of three std::chrono::system_clock func-
tions.

4 Design Decisions
4.1 Semantics of Compile-Time Evaluation
When evaluated during compilation, system_clock::now() will return the time point corresponding to the
moment of constant evaluation. This aligns with the existing semantics where now() returns the current time
when called.

4.2 Portability Considerations
Different compilers may evaluate the function at different times in the compilation process, leading to different
timestamp values. This is acceptable since:

— The primary use case is obtaining a deterministic value for a specific build
— This is consistent with current constexpr functions that may depend on compilation environment factors
— The exact time is not important

4.3 Implementation Considerations
Implementations would need to provide a mechanism for the compiler to determine the current system time
during constant evaluation. This would likely take the form of a built-in or intrinsic function: a function that is
declared by the compiler and implemented in a special way by the compiler itself. The only difference would be
that this special function would, itself, be constexpr (i.e. evaluable at compile time).

4.4 Alternatives Considered
4.4.1 New Function Instead of Modifying Existing One

We considered adding a new function such as constexpr_now() instead of adding constexpr to the existing
function. This was rejected because:

— It creates unnecessary API duplication
— The existing function name clearly expresses the intent
— Making the existing function constexpr follows the pattern used for other functions in the standard library

5 Technical Specifications
The functions std::chrono::system_clock::now, std::chrono::system_clock::from_time_t and
std::chrono::system_clock::to_time_t shall be callable in constant evaluation contexts.

2

namespace std::chrono {
class system_clock {
public:

// ...
static constexpr time_point now() noexcept;

static constexpr std::time_t to_time_t(const time_point& t) noexcept;
static constexpr time_point from_time_t(std::time_t t) noexcept;
// ...

};
}

[Note: For brevity and clarity, only the declaration of system_clock is modified in this document to mark
functions as constexpr, but all the functions so marked must be similarly marked as constexpr in any detailed
descriptions elsewhere in the standard. — end note]

5.1 Effects
5.1.1 std::chrono::system_clock::now

When called during constant evaluation, the function shall return a std::chrono::system_clock::time_point
representing the time at which the evaluation occurs.

When called at runtime, the function’s behavior remains unchanged from the current standard.

5.1.2 std::chrono::system_clock::to_time_t

When called during constant evaluation, the function shall return a std::time_t corresponding to the specified
std::chrono::system_clock::time_point input.

When called at runtime, the function’s behavior remains unchanged from the current standard.

5.1.3 std::chrono::system_clock::from_time_t

When called during constant evaluation, the function shall return a std::chrono::system_clock::time_point
corresponding to the specified std::time_t input.

When called at runtime, the function’s behavior remains unchanged from the current standard.

6 Comparison with Existing Alternatives
6.1 Limitations of __DATE__ and __TIME__ Macros
While some might suggest that __DATE__ and __TIME__ preprocessor macros already provide equivalent compile-
time timestamp functionality, these macros have significant limitations that make them inadequate replacements
for a constexpr std::chrono::system_clock::now():

— Likely impossible to implement a Clock using __DATE__ and __TIME__: Using the __DATE__ and
__TIME__ to implement a Clock is likely impossible. This proposal would, automatically, make such a
Clock available on every standard-compliant platform.

[Note: The author believes that it is actually impossible to implement a Clock using the __DATE__ and __TIME__
macros but concedes that there are people whose knowledge of ancient runes and arcane words of power is much
greater and who may be able to create a Clock but questions whether such madness should be undertaken. —
end note]

3

— Timezone Ambiguity: The timezone in which __DATE__ and __TIME__ macros are specified is not well-
defined and differs from platform to platform. This inconsistency makes it difficult to reliably construct a
std::chrono::time_point from these values.

— String Format Limitations: The macros expand to string literals requiring parsing:

— __DATE__ expands to a string literal in the form “Mmm DD YYYY”
— __TIME__ expands to a string literal in the form “HH:MM:SS”

Converting these strings to a proper time point requires additional parsing logic, introducing complexity
and potential errors.

— Granularity Restrictions: The __TIME__ macro only provides second-level granularity, whereas
std::chrono::system_clock::now() typically offers much finer resolution.

— Standard Library Integration: Using macros requires converting strings to time types, whereas
constexpr std::chrono::system_clock::now() would directly provide a properly typed time_point
that integrates seamlessly with the rest of the chronology library.

7 Potential Concerns
7.1 Consistency Between Multiple Compilations
Different compilation runs will naturally produce different timestamps. This is expected and aligned with the
function’s purpose of providing the current time.

For use cases requiring consistent values across builds (e.g., deterministic builds), developers should continue
using alternative approaches such as injecting timestamp values through build system variables.

7.2 Impact on Build Caching Systems
Build caching systems like ccache might be affected because identical source files could produce different object
files due to embedded timestamps. However:

— This only affects code that actually uses system_clock::now() in constant expressions
— Caching systems already must handle time-dependent macros like __TIME__
— Many caching systems provide mechanisms to ignore specific time-dependent elements

8 Implementation Experience
No experimental implementations exist at this time, but it is expected that this feature can be added with
reasonable effort and without negative performance impacts.

9 Conclusion
Making std::chrono::system_clock::now, std::chrono::system_clock::from_time_t and std::chrono::system_clock::to_time_t
usable in constant evaluation contexts provides useful capabilities for C++ developers while maintaining back-
ward compatibility. The suggested change aligns with the direction of increasing constexpr support throughout
the standard library and enables new compile-time patterns.

10 Acknowledgements
Thanks to Howard Hinnant, Alexander Popovich and Scott Determan for their encouragement and valuable
input and feedback on this proposal.

4

11 References
[1] ISO/IEC 14882:2023 Programming Language C++ (C++23 DIS)

5

	Revision History
	Introduction
	Motivation and Scope
	Motivating Examples
	Time-Based UUIDs
	Additional Use Cases

	Impact On the Standard
	Core Language Impact
	Library Impact

	Design Decisions
	Semantics of Compile-Time Evaluation
	Portability Considerations
	Implementation Considerations
	Alternatives Considered
	New Function Instead of Modifying Existing One

	Technical Specifications
	Effects
	std::chrono::system_clock::now
	std::chrono::system_clock::to_time_t
	std::chrono::system_clock::from_time_t

	Comparison with Existing Alternatives
	Limitations of __DATE__ and __TIME__ Macros

	Potential Concerns
	Consistency Between Multiple Compilations
	Impact on Build Caching Systems

	Implementation Experience
	Conclusion
	Acknowledgements
	References

