/O Stream Manipulator for Binary Integers

Document #: POOOOORO

Date 2025-02-25

Programming Language C++

Audience LEWG Incubator, SG16

Reply-To Javier Estrada <javier.estrada@outlook.com>

1 Introduction

The std: :dec, std: :oct and std: : hex standard manipulators for integrals numbers address decimal, octal
and hexadecimal bases, input/output, respectively. However, there is no current solution for binary input/output,
nor for binary literals.

2 Motivation and Scope

The goal and motivation of this paper is to fill a gap in the I/O streams representation without resorting to non-
standard solutions. A solution that takes advantage of the existing I/O infrastructure is preferred.

Consider the following motivating example:

[Example 1:
#include <bitset>
#include <iostream>

int main() {
// current solution for output, no solution for input
std: :cout << "The number 42 in binary: " << std::bitset<8>{42} << '\n’';
return 0;

}

— end example]
The previous example yields the following output:

The number 42 in binary: 00101010

The “bitset trick”, as it is known, only takes care of output, without consideration for width or formatting, showing
or hiding the binary base. A standard solution would make use of a std: :bin manipulator as follows:

[Example 2:
#include <iomanip>
#include <iostream>

using std::setw, std::setfill, std::showbase;

int main() {
// take advantage of existing infrastructure
std: :cout << setw(8) << setfill('0') << showbase;
std: :cout << "The number 42 in binary: " << std::bin << 42 << '\n';
return O;

}

— end example]

The previous example would yield the following output, accounting for width, fill and base:

The number 42 in binary: 0b00101010

A similar example for binary input:

[Example 3:
#include <iomanip>
#include <iostream>

int main() {
int n{};
std: :istringstream is("101010");

is >> std::bin >> n;

std: :cout << "Parsing \"101010\" as binary: " << std::bin << n << '\n';
return 0;

}
— end example]

The previous example would yield the following output:

Parsing "101010" as binary: 101010

3 Impact on the Standard

This is purely a library addition, requiring no changes to the language. It can be implemented using C++23
compilers with existing library features. The following sections and tables would be affected. However, these may
not be the only places, but anywhere that the ios: :basefield flags I/O for integral values are checked, most

likely an additional check for ios_base: :bin would need to be added.

This presumes that:

¢ the additional flag fits in the current bitmask used for the existing flags,
e already compiled operators wouldn’t check the new flag.’

Additional changes may be needed for the num_get<> and num_put<> classes, not covered in this document,
except what has been identified in section 3.6 of this document.

! Thanks to Jan Schultke for highlighting this.

3.1 Section 30.4.3.3.3

Table 110 adds two rows for binary output, showbase, noshowbase manipulators.

Table 110: Integer conversion [tab:facet.num.

put.int]

State stdio equivalent
(basefield == ios_base::bin) && !uppercase %b
(basefield == ios_base::bin) %B
basefield == ios_base::oct %o
(basefield == ios_base::hex) && !uppercase %X
(basefield == ios_base: :hex) %X
for a signed integral type %d
for an unsigned integral type %$u

3.2 Section 31.5.1 Header <ios> synopsis

A new basefield would be added:

// 31.5.5.3, basefield

+ ios_base& bin (ios_baseé& str);
ios_base& dec (ios_base& str);
ios_base& hex (ios_base& str);
ios_base& oct (ios_base& str);

3.3 Section 31.5.2.1 General [ios.base.general]

A new format flag would be added in the class declaration for fmt£flags:

// 31.5.2.2.2, fmtflags
using fmtflags = T1 ;

static
+ static
static
static
static

constexpr fmtflags boolalpha = unspecified ;

constexpr fmtflags bin = unspecified ;
constexpr fmtflags dec = unspecified ;
constexpr fmtflags fixed = unspecified ;
constexpr fmtflags hex = unspecified ;

3.4 Table 118: £mtflags effects [tab:ios.fmtflags]

A new row is added before the boolalpha element to account for the ios_base: :bin flag.

Table 118: Integer conversion [tab:facet.num .put.int]
Element Effect(s) if set

bin converts integer input or generates integer output in binary base

boolalpha |insert and extract the bool type in alphabetic format

Rest of the table stays as is.

3.5 Section 31.5.5.3 basefield manipulators

Two paragraphs are added after paragraph 7 to describe the std: :bin manipulator:

ios_baseé& bin(ios_baseé& str);

8. Effects: Calls str.setf (ios_base::bin, ios base::basefield).
9. Returns: str.

3.6 Section 31.7.6.3.2 Arithmetic inserters

The example code in paragraph 1 dealing with num_get<> and num_put<> would need an additional flag check:
When val is of type short the formatting conversion occurs as if it performed the following code fragment:

ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<
num_put<charT, ostreambuf iterator<charT, traits>>
>(getloc()) .put(*this, *this, £fill(),
baseflags == ios _base::bin || ios_base::oct || baseflags == ios_base: :hex
? static_cast<long>(static_cast<unsigned short>(val))
static_cast<long>(val)).failed();

When val is of type int the formatting conversion occurs as if it performed the following code fragment:

ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<
num_put<charT, ostreambuf iterator<charT, traits>>
>(getloc()) .put(*this, *this, £fill(),
baseflags == ios _base::bin || ios_base::oct || baseflags == ios_base: :hex
? static_cast<long>(static_cast<unsigned int>(val))
static_cast<long>(val)).failed()

3.7 Section 31.7.7

Paragraph 4 would add an additional flag to check:

unspecified setbase(int base) ;
4. Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,

traits> then the expression out << setbase (base) behaves as if it called £ (out, base),orifinis
an object of type basic_istream<charT, traits>then the expressionin >> setbase (base)

behaves as if it called £ (in, base), where the function f is defined as:

void f(ios_base& str, int base) ({
// set basefield

- str.setf (base == 8 ? ios_base::oct :
+ str.setf (base == 2 ? ios_base::bin :
+ base == 8 ? ios base::oct :

base == 10 ? ios_base::dec :

base == 16 ? ios_base::hex :

ios_base::fmtflags(0), ios_base::basefield);

The expression out << setbase (base) has type basic_ostream<charT, traits>&and value out
The expression in >> setbase (base) has type basic_istream<charT, traits>&and value in.

4 Design Decisions

Given that this proposal relies on an existing design and infrastructure, designs decisions are not applicable.

5 Technical Specifications

The sections, tables and paragraphs referenced in section 3 make use of the latest C++23 draft, namely N4950.
Those elements are subject to change if they have shifted in the current draft (C++26).

6 Acknowledgements

Thanks to Chris Ryan, Victor Zverovich, Jonathan Wakely, and Jan Schultke for their input and corrections.

7 References

N4950, Working Draft, Standard for Programming Language C++

Langer, Angelika, Kreft, Klaus, Standard C++ IOStreams and Locales: Advanced Programmer’s Guide and
Reference, Addison Wesley Professional, 2000.

