
I/O Stream Manipulator for Binary Integers
Document #: P00000R0
Date 2025-02-25
Programming Language C++

Audience LEWG Incubator, SG16
Reply-To Javier Estrada <javier.estrada@outlook.com>

1 Introduction

The std::dec, std::oct and std::hex standard manipulators for integrals numbers address decimal, octal
and hexadecimal bases, input/output, respectively. However, there is no current solution for binary input/output,
nor for binary literals.

2 Motivation and Scope

The goal and motivation of this paper is to fill a gap in the I/O streams representation without resorting to non-
standard solutions. A solution that takes advantage of the existing I/O infrastructure is preferred.

Consider the following motivating example:
[Example 1:
#include <bitset>
#include <iostream>

int main() {
 // current solution for output, no solution for input
 std::cout << "The number 42 in binary: " << std::bitset<8>{42} << '\n';
 return 0;
}
—— end example]

The previous example yields the following output:

The number 42 in binary: 00101010

The “bitset trick”, as it is known, only takes care of output, without consideration for width or formatting, showing
or hiding the binary base. A standard solution would make use of a std::bin manipulator as follows:

[Example 2:
#include <iomanip>
#include <iostream>

using std::setw, std::setfill, std::showbase;

int main() {
 // take advantage of existing infrastructure
 std::cout << setw(8) << setfill('0') << showbase;
 std::cout << "The number 42 in binary: " << std::bin << 42 << '\n';
 return 0;
}
—— end example]

The previous example would yield the following output, accounting for width, fill and base:

The number 42 in binary: 0b00101010

A similar example for binary input:
[Example 3:
#include <iomanip>
#include <iostream>

int main() {
 int n{};
 std::istringstream is("101010");

 is >> std::bin >> n;

 std::cout << "Parsing \"101010\" as binary: " << std::bin << n << '\n';
 return 0;
}
—— end example]

The previous example would yield the following output:

Parsing "101010" as binary: 101010

3 Impact on the Standard

This is purely a library addition, requiring no changes to the language. It can be implemented using C++23
compilers with existing library features. The following sections and tables would be affected. However, these may
not be the only places, but anywhere that the ios::basefield flags I/O for integral values are checked, most
likely an additional check for ios_base::bin would need to be added.

This presumes that:

• the additional flag fits in the current bitmask used for the existing flags,
• already compiled operators wouldn’t check the new flag.1

Additional changes may be needed for the num_get<> and num_put<> classes, not covered in this document,
except what has been identified in section 3.6 of this document.

1 Thanks to Jan Schultke for highlighting this.

3.1 Section 30.4.3.3.3
Table 110 adds two rows for binary output, showbase, noshowbase manipulators.

Table 110: Integer conversion [tab:facet.num.put.int]
State stdio equivalent

(basefield == ios_base::bin) && !uppercase %b
(basefield == ios_base::bin) %B
basefield == ios_base::oct %o
(basefield == ios_base::hex) && !uppercase %x
(basefield == ios_base::hex) %X
for a signed integral type %d

for an unsigned integral type %u

3.2 Section 31.5.1 Header <ios> synopsis

A new basefield would be added:

// 31.5.5.3, basefield
+ ios_base& bin (ios_base& str);

ios_base& dec (ios_base& str);
ios_base& hex (ios_base& str);
ios_base& oct (ios_base& str);

3.3 Section 31.5.2.1 General [ios.base.general]
A new format flag would be added in the class declaration for fmtflags:

// 31.5.2.2.2, fmtflags
using fmtflags = T1 ;
static constexpr fmtflags boolalpha = unspecified ;

+ static constexpr fmtflags bin = unspecified ;
static constexpr fmtflags dec = unspecified ;
static constexpr fmtflags fixed = unspecified ;
static constexpr fmtflags hex = unspecified ;

3.4 Table 118: fmtflags effects [tab:ios.fmtflags]
A new row is added before the boolalpha element to account for the ios_base::bin flag.

Table 118: Integer conversion [tab:facet.num .put.int]
Element Effect(s) if set

bin converts integer input or generates integer output in binary base
boolalpha insert and extract the bool type in alphabetic format
Rest of the table stays as is.

3.5 Section 31.5.5.3 basefield manipulators
Two paragraphs are added after paragraph 7 to describe the std::bin manipulator:

ios_base& bin(ios_base& str);

8. Effects: Calls str.setf(ios_base::bin, ios_base::basefield).
9. Returns: str.

3.6 Section 31.7.6.3.2 Arithmetic inserters
The example code in paragraph 1 dealing with num_get<> and num_put<> would need an additional flag check:

When val is of type short the formatting conversion occurs as if it performed the following code fragment:

ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<

num_put<charT, ostreambuf_iterator<charT, traits>>
>(getloc()).put(*this, *this, fill(),
baseflags == ios_base::bin || ios_base::oct || baseflags == ios_base::hex

? static_cast<long>(static_cast<unsigned short>(val))
: static_cast<long>(val)).failed();

When val is of type int the formatting conversion occurs as if it performed the following code fragment:

ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<

num_put<charT, ostreambuf_iterator<charT, traits>>
>(getloc()).put(*this, *this, fill(),
baseflags == ios_base::bin || ios_base::oct || baseflags == ios_base::hex

? static_cast<long>(static_cast<unsigned int>(val))
: static_cast<long>(val)).failed();

3.7 Section 31.7.7

Paragraph 4 would add an additional flag to check:

unspecified setbase(int base);
4. Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,

traits> then the expression out << setbase(base) behaves as if it called f(out, base), or if in is
an object of type basic_istream<charT, traits> then the expression in >> setbase(base)
behaves as if it called f(in, base), where the function f is defined as:

void f(ios_base& str, int base) {
 // set basefield

- str.setf(base == 8 ? ios_base::oct :
+ str.setf(base == 2 ? ios_base::bin :
+ base == 8 ? ios_base::oct :

 base == 10 ? ios_base::dec :
 base == 16 ? ios_base::hex :
 ios_base::fmtflags(0), ios_base::basefield);
}

The expression out << setbase(base) has type basic_ostream<charT, traits>& and value out.
The expression in >> setbase(base) has type basic_istream<charT, traits>& and value in.

4 Design Decisions
Given that this proposal relies on an existing design and infrastructure, designs decisions are not applicable.

5 Technical Specifications
The sections, tables and paragraphs referenced in section 3 make use of the latest C++23 draft, namely N4950.
Those elements are subject to change if they have shifted in the current draft (C++26).

6 Acknowledgements
Thanks to Chris Ryan, Victor Zverovich, Jonathan Wakely, and Jan Schultke for their input and corrections.

7 References
N4950, Working Draft, Standard for Programming Language C++

Langer, Angelika, Kreft, Klaus, Standard C++ IOStreams and Locales: Advanced Programmer’s Guide and
Reference, Addison Wesley Professional, 2000.

