
anonymous constants: past, present and future

1

Why anonymous constants?
1. Naming everything is not the solution,

otherwise we wouldn't have lambdas i.e.
anonymous functions

2. Requires name
3. Excessively wordy
4. Moved far from point of use
5. Requires maintaining file, manual sorting

sparse list

2

Why should anonymous
constants be static?

programmer expectation that constants are
static like string literals, ex. "Hello World", and
assembly inline/local constants
temporaries can immediately dangle; dangling
constants are embarrassing
want ROM guarantee or at least next best thing
const and static
memory safe
thread safe

3

embarrassing (Part 1)
Most if not all programming languages in use,

except C++, don't immediately dangle something
as simple and beginner as constants/literals.

4

embarrassing (Part 2)
Assembly is easier and safer

Guaranteed static and const

Decomposed constant in assembly instruction

 .global a
 .section .rodata
 .align 4
 .type a, @object
 .size a, 4
a:
 .long 5

mov register , constant
mov memory , constant

< > < >
< > < >

5

embarrassing (Part 3)
C is easier and safer

"6.5.2.5 Compound literals" ¶ 5

"The value of the compound literal is that of an
unnamed object initialized by the initializer list. If
the compound literal occurs outside the body of a
function, the object has static storage duration;
otherwise, it has automatic storage duration

associated with the enclosing block."

6

embarrassing (Part 4)
C++ WAS easier and safer

CFront i.e. C with classes, because C++ was
preprocessed to C code, which didn't immediately

dangle their constants/literals.

7

Requirements
1. const [&]; will only be used in a constant

fashion
2. constexpr; can be constructed at compile

time
3. consteval; was constructed at compile

time

Result
constinit; constant initialization, sensible
lifetime extension of a temporary to a global 8

Lambda and macros (present)
Current best solution

CON(s) (explicit)

How many times must we say const?
Compilers must undue boilerplate

const std::string& dangler(const std::string& s) { return s; }
#define CONSTANT ...// macro can conceal lambda usage
void h() {
 dangler([] /*consteval*/ -> auto const & {
 static constinit const std::string anonymous{"Hello Wo
 return anonymous;
 }());
 dangler(CONSTANT("Hello World"s));
}

9

Static storage for braced
initializers (C++26) (p2752r3)

When size is 5000, 500, 50, 5, 1?
Superfluous bracelets when size is 1?

CON(s) (explicit)

No size restrictions
No static guarantee

void f(std::initializer_list<double> il);
void h() {
 f({1, 2, 3});
 //static constexpr double __b[3] = {double{1}, double{2}, doub
 //f(std::initializer_list<double>(__b, __b+3));
}

10

std::span over an initializer list
(C++26) (p2447r6)

CON(s) (explicit)

library user must wrap in initializer list
library writer must duplicate functions
No static guarantee

const double& dangler(const double& d) { return d; }
const double& dangler(std::span<const double, 1> s)
 { return dangler(s.front()); }
void h() {
 dangler({1});// practically safe
 //static constexpr double __b[3] = {double{1}}; // backing arr
 //f(std::initializer_list<double>(__b, __b+1));
}

11

std::constant_wrapper
(p2781r4)

CON(s) (explicit)

Only works on structural types

std::cw<1>
std::cw<2uz>
std::cw<3.0>
std::cw<4.f>
std::cw<foo>
std::cw<my_complex(1.f, 1.f)>

12

C constexpr static (C23)

PRO(s)

Best explicit syntax; better if one keyword

CON(s) (explicit)

Only works on C23
constexpr static vs. constant or read_only
"For the storage duration of the created
objects we go with C++ for compatibility"

&(static constexpr struct foo) {1, 'a', 'b'}

13

constexpr structured bindings
and references to constexpr

variables (p2686r3)
Allowing static and non-tuple constexpr
structured binding
Making constexpr implicitly static
Always re-evaluate a call to get?
Symbolic addressing

CON(s)

Wording: or temporary object
14

Better than Rust?

"… the only keyword that most Rust programmers
should need to know is const – I imagine static

variables will be used quite rarely."

CON(s) (explicit)

not really a automatic promotion as it must be
requested
like C++, a tool that must be used, not default

// rvalue_static_promotion
const X: &'static T = &<constexpr foo>;

15

Breakage? (Part 1)
 with static

code safer simpler

✓ ✓

~ ✓

~ ✓

auto [](const std::string& s) {
 return s;
}("HW"s);

const std::string& s = "HW"s;

const std::string s = "HW"s;

16

Breakage? (Part 2)
The point

While the consistency is appreciated for
simplicity
Only temporaries passed to function calls
need it due to immediate dangling. The other
two would benefit for instance if & was
returned.

17

Breakage? (Part 3)
The point

Lifetime extending temporary constants
passed to functions is not expected to cause
problems as the function knows not whether
the argument is global, local or temporary.

18

Breakage? (Part 4)
What about the other two?

Working Draft, Standard for Programming
Language C++ [n4910]

6.9.3.2 Static initialization [basic.start.static]

"An implementation is permitted to perform the
initialization of a variable with static or thread
storage duration as a static initialization even if
such initialization is not required to be done
statically …"

3

19

Performance (Part 1)

const type qualifier
"Objects declared with const-qualified types may be
placed in read-only memory by the compiler, and if

the address of a const object is never taken in a
program, it may not be stored at all."

https://en.cppreference.com/w/c/language/const

20

https://en.cppreference.com/w/c/language/const

Performance (Part 2)
avoids repeated stack [and heap] allocations
every time function called in one thread
avoids repeated stack [and heap] allocations
every time function called by multiple threads
assembly inline constants / embedded in
instruction
potential deduplication
potential referencing component of larger
constant

21

Teachability (Part 1)
Requirements

1. const [&]; will only be used in a constant
fashion

2. constexpr; can be constructed at compile
time

3. consteval; was constructed at compile time

22

Teachability (Part 2)
Requirement #1 const [&]

C++ Core Guidelines
F.16: For “in” parameters, pass cheaply-

copied types by value and others by
reference to const [cppcgrf42]

23

Teachability (Part 3)
Requirement #2 constexpr

Make everything constexpr
As the limit of constexpr approach 100%, the
programmer only need to concern themselves
with requirement #3

24

Teachability (Part 4)
Requirement #3 consteval

Was the constant initiated with only
constants?

25

Teachability (Part 5)

How easy is it for the programmer to tell that
this was only initialized with constants? VERY
EASY

auto whatever = {
 {1, 2, 3},
 {4, 2, 5},
 {3, 2, 1},
}

26

Teachability (Part 6)

How easy is it for the programmer to tell that
this was only initialized with constants? EASY

const auto i = 2;
auto whatever = {
 {1, i, 3},
 {4, i, 5},
 {3, i, 1},
}

27

Teachability (Part 7)

How easy is it for the programmer to tell that
this was NOT initialized completely with
constants? EASY. Even if i was far away, the
variable is an indicator of it not likely being
constant. After all, it is variable.

auto whatever = {
 {1, i, 3},
 {4, i, 5},
 {3, i, 1},
}

28

MAY vs MUST
May be static vs Must be static

How does a programmer know whether the
compiler made it static?
How does a programmer know whether they
even have a dangle that needs fixing?
Pessimism = uglier, harder to maintain code.
Have to look at assembly code to know.
Expect beginners to look at assembly code.
Varies among compilers
Varies among a single compiler's flags

29

