
Doc No.: Pxxxx
Author: Andrew Tomazos <​andrewtomazos@gmail.com​>
Project: Programming Language C++
Audience: Evolution
Date: 2019-04-10

Proposal of Handles

Introduction
We propose the addition to C++ of a new kind of entity called ​handles​. Handles have
similarities to classes, pointers and references. Handles have copy-by-reference semantics,
and may or may not be destroyed automatically by the implementation at an unspecified time
after they become unreachable.

Motivating Example
Suppose we are creating a random dungeon generator.

Let us define a ​dungeon​ as a set of ​rooms​, where some pairs of rooms are directly connected
by ​doors​, and there is a path between every pair of rooms (that is, there is a series of doors we
could walk through to get from any room A to any other room B in the dungeon).

We want to generate random such dungeons. The algorithm we will use is:

1. We start with an NxN grid.
2. Each cell is assigned randomly as either a room or impassible with some probability P.
3. The starting room is (N/2,N/2), which is always assigned as a room.
4. There is a door between each pair of rooms that share a side.

Let’s start with the complete code and then walk through it:

 struct auto Room {

 Room(size_t id) : id(id) {}

 // a unique id number for this room

 size_t id;

 // Door i of this room leads to the Room doors[i]

 std::vector<Room> doors;

mailto:andrewtomazos@gmail.com

 };

 Room generate_dungeon(size_t N, float P) {

 std::mt19937 gen(std::random_device{});

 std::uniform_real_distribution<float> dis;

 // STEP 1

 std::vector<Room> rooms_mat(N*N);

 auto rooms = [&](size_t x, size_t y) -> Room& {

 return rooms_mat[x*N+y];

 };

 size_t next_id = 1;

 // STEP 2

 for (auto& row : rooms)

 for (auto& cell : row)

 if (dis(gen) < P)

 cell = new Room(next_id++);

 // STEP 3

 rooms(N/2,N/2) = new Room(0);

 // STEP 4

 auto connect_rooms = [](Room a, Room b) {

 if (a != nullhnd && b != nullhnd) {

 a.doors.push_back(b);

 b.doors.push_back(a);

 }

 };

 for (size_t x = 0; x < N-1; x++)

 for (size_t y = 0; y < N; y++)

 connect_rooms(rooms(x,y), rooms(x+1,y));

 for (size_t x = 0; x < N; x++)

 for (size_t y = 0; y < N-1; y++)

 connect_rooms(rooms(x,y), rooms(x,y+1));

 return rooms(N/2,N/2);

 }

 int main() {

 Room current_room = generate_dungeon(100, 0.7);

 std::mt19937 gen(std::random_device{});

 std::uniform_real_distribution<size_t> dis;

 for (size_t i = 0; i < 1000; i++) {

 size_t door = dis(gen) % current_room.doors.size();

 Room next_room = current_room.doors[door];

 std::cout << “Moving from room “

 << current_room.id

 << “ to room “

 << next_room.id

 << std::endl;

 current_room = next_room;

 }

 }

Let’s work through the interesting lines:

 struct auto Room {

Starting a class definition with ​class auto ​ or ​struct auto ​, declares a handle type. A
handle definition actually introduces a pair of related types. There is the handle type which is
given the name (Room). Then there is the payload type, which is an anonymous class type (like
how a lambda generates an anonymous class type). Handle types have similarities to pointer
and reference types. In particular a handle types default constructor, copy constructor, move
constructor, copy assignment operator, move assignment operator and destructor have built-in
semantics (like pointers and reference types) and are not overloadable.

 size_t id;

Here we see a normal member of Room. Like a reference type, a Room handle can be used
with the dot operator to refer to its members. So given a Room ​r ​, we can refer to this member
with ​r.id ​.

 std::vector<Room> doors;

The standard containers are specialized for handle types in such a way that the ownership
relationship between the elements of doors and the enclosing handle type is visible to the
implementation. We will see why this is important later.

 std::vector<Room> rooms_mat(N*N);

Here we see a std::vector<Room> initialized with a size_t which causes the default constructor
of Room to be called N*N times. Notice that the class definition of Room does not have a
default constructor, and even if it did, it would not be called here. The default constructor of
Room is the built-in handle default constructor, which causes a handle to be initialized to a
special value called a null handle.

 for (auto& row : rooms)

 for (auto& cell : row)

 if (dis(gen) < P)

 cell = new Room(next_id++);

Here we see a new expression of handle type. A new expression of handle type is special. In
particular it is the only way to call the payload constructors that are declared in the class
definition. A new expression of a handle type returns an object (by value) of handle type
(rather than a pointer to the handle type). Here the new expression is calling the Room(size_t)
constructor, and returning a Room handle. This Room handle is then assigned to cell (which is
a reference to a handle in the std::vector<Room> rooms). The assignment is the built-in handle
move assignment operator and overwrites the null handle with the newly created one.

 auto connect_rooms = [](Room a, Room b) {

 if (a != nullhnd && b != nullhnd) {

 a.doors.push_back(b);

 b.doors.push_back(a);

 }

 };

Here we see a new keyword ​nullhnd ​. There is likewise a type called ​std::nullhnd_t ​.
The relationship and built-in operations between nullptr, std::nullptr_t and pointer types, is the
same as the relationship between nullhnd, std::nullhnd_t and handle types.

 return rooms(N/2,N/2);

 }

Here is where the real magic happens. Notice we are returning just one element of the
std::vector<Room>. The local std::vector<Room> variable is destroyed as the function returns,
destroying the handles it contains. The returned room continues to be referenced by the return
value, likewise the rooms it is connected to by its doors member, and recursively the rooms
those are connected to, forming the complete dungeon. The rooms that are not connected via a
path from the starting room (and hence not part of our generated dungeon) become
unreachable. Note that there still exist handle objects to these unreachable rooms (from doors
between rooms), however there is no longer a way to refer to them. At this point these
unreachable rooms become available for destruction. Formally, they may (or may not) be
destroyed by the implementation at some point after the vector is destroyed and before the end

of the program. In practice, a high quality implementation of handles will destroy them
automatically shortly after the function returns.

Notice that if we had of used any of the current memory management mechanisms available in
C++ it wouldn’t have worked correctly. Notably std::shared_ptr would have created cycles
between the unreachable rooms causing a permanent memory leak. std::unique_ptr and single
ownership doesn’t help because there are multiple references to rooms. A memory pool is
likewise leaky. The only choice would be to manually manage objects by marking reachable
rooms and then delete the unreachable ones - or to complicate the algorithm in other ways.

Furthermore, handles are more performant than std::shared_ptr. std::shared_ptr requires
expensive atomic operations to mutate the reference count. Handles don’t need that.

Background / Motivation
A basic understanding of automatic memory management algorithms is a necessary
background for comprehension of this proposal. We recommend the following two wikipedia
articles as a starting point:

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

https://en.wikipedia.org/wiki/Tracing_garbage_collection

We will refer to the family of high-performance precise tracing garbage collection algorithms (or
better), collectively, as ​garbage collection​. Ie The kinds of garbage collection that every popular
contemporary language uses (apart from C and C++). In particular we are not referring to
std::shared_ptr reference counting or global conservative collectors as garbage collection.

The underlying motivation of this proposal is to add to C++ a way to use garbage collection
alongside manual memory management. Garbage collection is a useful proven tool that, for
some use cases, has well-understood advantages.

Design Goals
We worked under the following constraints:

1. BACKWARD COMPATIBLE: No breaking changes to C++
2. ZERO COST: The garbage collector shouldn’t cost performance, if it isn’t used.
3. CONVENIENT: The garbage collector should be available out of the box as part of the

language, and enabled implicitly by syntactic use.
4. ENCAPSULATED: Garbage collected objects should be able to co-exist robustly and

elegantly with manually allocated objects in the same program.

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Tracing_garbage_collection

5. IMPLEMENTABLE: A minimally compliant garbage collector should be easy to
implement.

6. IMPLEMENTOR FREEDOM: A high-quality compliant garbage collector should be
possible to implement.

7. FAMILIAR: All things being equal, usage should be familiar to users of garbage collected
languages.

8. SIMPLE: The garbage collector should be easy to use and intuitive.

Design Process
The best way to achieve the design goals is to introduce a new kind of entity, that has, where
possible, similar semantics to a class type, but has differences, as needed, to accommodate the
design goals. Objects of existing class types are not garbage collected. Objects of the new
kind of class type are exclusively garbage collected. The class designer chooses, at
class-design-time, whether objects of their class shall be garbage collected or not.

This is not the only possible design. One can imagine a design whereby a class can have some
objects garbage-collected and other objects of the same type not. Such a design is inferior with
respect to the design goals. In particular, design goals 4,5,6,7 and 8 - are all better served with
the proposed design.

Existing standard and non-standard garbage collection systems (both library and core
language) available to C++ have been studied. We claim the proposed design is superior as
evaluated against the design goals.

Therefore, syntactically a way is added to mark class definitions according to this property:

 class C { /* not garbage collected */ };

 struct C { /* not garbage collected */ };

 class auto C { /* garbage collected */ };

 struct auto C { /* garbage collected */ };

 [TODO: unions?]

The auto in this context is short for AUTOmatically memory managed.

As these marked types are exclusively garbage collected, we are able to encapsulate usage of
objects of the type in such a way that they are only handled by their address on some logical
garbage collected heap.

[Note: The logical graph that is formed by these garbage collected objects (vertices) and their
addresses (edges), form the data structure over which the garbage collector operates. In order

to maintain the integrity of this graph, the exclusive handling by these addresses enables robust
tracking of the graph]

Due to the desired exclusivity of usage by these addresses, we syntactically remove the other
ways to manage objects of these types. In particular given a normal C++ class type C one can
manage C by value (C), by reference (C&) or by pointer (C*). We don’t want garbage collected
objects to be handleable by any of these methods to preserve the integrity of the object graph.
In order to achieve this we simply make the “real” class type anonymous and have the name C
refer to the address type. In accordance with design goal 7 these are the same semantics that
garbage collected languages uses. To distinguish these garbage collected addresses from
pointers and references we coin a new name for them. To highlight that they have
reference-semantics we call them ​handles​.

Informal Specification

A handle definition of H:

 class auto H { /*...*/ };

defines one name, and two types. An anonymous class type we call the payload type, and then
the handle type, which has a built-in compound type “handle of __payload_H” where
__payload_H is a name for exposition-only of the payload type. The name H names the handle
type, not the payload type. [Note: There is no syntax, given a class type C, to form “handle to
C”. Likewise, given “handle to C”, there is no way to extract C.]

The injected class name of the payload type is the handle type, not the payload type. However
constructors and destructor of the payload type syntactically use the handle type name:

 class auto H {

 public:

 H(); // default constructor of payload type

 H(H); // clone constructor of payload type

 // from an object of handle type

 }

The expression ​this ​ within a NSMF definition of a payload type is a const object of handle
type.

The handle type is a built-in composite type that has the following basic functionality:

● Default-constructible to a null handle

● Copy-constructible from another handle
● Copy-assignable from another handle

When used in an expression of the form E1.E2, it is as if the handle is a reference to the
payload. That is, it dispatches using the usual reference type semantics:

 H h = /*...*/;

 h.f(); // Calls function f from the handle definition of H

A new expression of a handle type constructs a new payload object and returns a handle to it:

 H h1 = new H; // calls payload default constructor

 H h2(h1); // no new payload object, this is just a handle copy

 H h3 = new H(h1); // creates a clone of h1 payload

 // and returns handle to clone into h3

The handle type is equality comparable with std::nullhnd_t:

 H h;

 assert(h == nullhnd);

The default equality and comparison operators of a handle type are based on handle ordering,
like pointers. These defaults can be overriden by payload-based ones in the handle definition.
There is also standard library functions std::handle_equal(h1,h2) and std::handle_less(h1,h2)
for cases where they are overridden but the underlying handle ordering is still required.

Each handle object is either null or ​attached​ to a payload object. A new expression creates a
handle object that is attached to the new payload object:

 H h = new H; // The handle object h is attached

 // to a newly created payload object

Handle copy construction and copy assignment makes a new handle object that is attached to
the same payload object:

 H h = new H; // 1 handle attached
 H h2 = h; // 2 handles attached

 H h3;

 H3 = h; // 3 handles attached

The destructor of a handle detaches the handle from its payload:

 {

 H h = new H; // 1 handle attached

 {

 H h2 = h; // 2 handles attached

 }

 // 1 handles attached

 }

 // 0 handles attached

We say: a payload object has zero or more handle objects attached to it.

Each object (any C++ object, not just payload object) ​owns ​zero or more handle object.

An object owns any handles that are direct or indirect subobjects of it:

 struct auto H1 {};

 struct S { H1 h; }

 struct auto H2 : H1 {

 H1 h;

 H1 a[10];

 S s;

 };

 int main() {

 H2 h2 = new H2;

 // The h2 payload object owns 13 handles:

 // 1 from the base handle

 // 1 from h2.h

 // 10 from h2.a (h2.a[0], h2.a[1], ..., h2.a[9])

 // 1 from h2.s.h

 }

In addition to the automatic subobject ownership relationship, when constructing a new handle
object (not payload object) it is possible to explicitly create an ownership relationship to a
containing object. This is for use in classes that use either normal new or placement new to
create objects that they “contain”. For example std::vector, std::map, std::optional,
std::unique_ptr. When the type T they are polymorphic on is a handle type (branched at
compile-time), the equivalent new or placement new occurs on the handle type (not the payload
type), and the new handle object is owned by the nominated object. This is achieved with
special overloads of operator new for library authors of the form:

 new (std::owned_handle_allocator, ...) T // where T is

 // a handle type

Let us define the ​handle object graph​ as a directed bipartite graph between handle objects and
payload objects. There is an edge from a handle (source) to a payload (destination) if the
handle is attached to the payload. There is an edge from a payload (source) to a handle
(destination) if the payload object owns the handle (directly or indirectly, through subobjects or
explicit ownership assignment). Notice that a handle can have at most one incoming edge.

For each handle that has no incoming edge, we call it a root handle. A root handle is one that is
not owned by a payload object. That is, it is not a direct or indirect subobject of a payload
object, and does not have an explicit ownership relationship with an object that is a direct or
indirect subobject of a payload object.

A payload object is ​reachable​ if there exists a path in the graph beginning at a root handle and
ending in the payload object.

A payload object that is not reachable is ​unreachable​.

Unreachable payload objects may or may not be destroyed by the implementation. They may
leak until the end of the program.

Unreachable payload objects that are destroyed by the implementation may be destroyed at
anytime after they become unreachable, in any thread, with any sequencing or concurrently.

Appendix A: 2014 Discussion

This proposal was first informally proposed on std-proposals in 2014. Here is a transcript of the
discussion and comments:

[std-proposals] Precise Per-Type Cyclic Garbage Collection
(DRAFT 1)
43 messages

Andrew Tomazos ​<andrewtomazos@gmail.com> Wed, Feb 12, 2014 at 12:03 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

Hey guys, this is a design I've been toying with (in
the abstract for some time actually). It needs a
bunch of work, but I would appreciate your feedback
on this short draft. Also, if you are aware of any
overlapping past proposals that would be great.

Thanks,
Andrew.

Precise Per-Type Cyclic Garbage Collection
(DRAFT 1)

Introduction / Summary

We propose a core language feature that allows
objects of user-selected class types to be cyclically
garbage collected. Constraints on the usage of
class types so selected, and pointers to such class
types, are imposed to enable the implementation
of fast safe precise collection.

Motivation

Many C++ programs can be decomposed into (a)
low-level components for which the performance
and timing control of manual memory management
and value layout are of great benefit; and (b)
higher-level organizational components for which
the benefit is dominated and negligble - and the
convenience of safe automatic cyclic garbage
collection would be worth the tradeoff.

It would be great to be able to get the best of both
worlds in one program. That is, to be able to
specify certain classes as being garbage collected
and others to be manually managed - and to only
pay for what you use.

Comparison

With Boehm Demers Weiser Collector

The Boehm Collector can only be used either
program-wide or not-at-all. What we propose
isolates garbage collection only to certain
user-selected types. Also, what we propose is
precise​ garbage collection like in the managed
languages, as opposed to ​conservative​ collection.
The reachability graph is tracked explicitly through
instrumenting the type system. That is, rather than
scanning entire memory areas for all potential
pointers to any dynamic memory, only the pointers
to collected types are tracked - and they are
tracked as they are initialized, assigned and
destroyed. This gives it a radically different
performance profile, and makes it proportional only
to the use of collected types in the program, and
not proportional to all dynamic memory use.

With shared_ptr<T>

Shared pointers cannot deal with cycles. weak_ptr
often does not have a sensible place where it can
be applied to break cycles, and when it does it is
awkward to use. Shared pointer are also awkward
to use with this through enable_shared_from_this.
What we propose is much cleaner and easier to
use, at the cost of the added implementation
complexity of compiler support. Under the
proposed feature, the user can just use regular
pointer syntax to work with collected types, and
doesn’t need to worry about any of these issues.

With ownership and memory pools

Ownership schemes are many times artificial. In
many object models, objects do not have natural
owners, and it can be challenging to impose one.
When an owner is selected the programmer must
be careful to make sure the lifetime of the owner

encloses uses of the owned object. This
implementation overhead and constraint is many
times not worth the effort compared to automatic
memory management.

Memory pools, which are just artificial owners, are
not feasible in many long-running programs. In
many such programs the memory pool can never
be cleared, so they are no different than simply
leaking into the heap and waste and exhaust
memory.

Specification

Introduce a context-sensitive keyword ​gc​ that can
appear in the head of a class specifier:

 class foo gc

 {

 ...

 };

If a class type is marked with gc, it is called a
collected type​. A subclass of a collected type is
also a collected type, whether or not marked with
gc. A collected type may not have any base
classes that are not also collected types. It follows
that all base classes and all subclasses of a
collected type are collected types.

An object of collected type is called a collected
object. A collected object may only be a complete
object or a base class subobject, it may not be a
member subobject or an array element:

 foo x[10]; // ill-formed

 struct bar { foo x; } // ill-formed

You can use pointers instead:

 foo* x[10]; // ok

 struct bar { foo* x; } // ok

A collected type may only be allocated with
dynamic storage duration. It may not be allocated
with automatic, static or thread local storage
duration. Again, you can use pointers instead:

 auto s = new foo;

 thread_local auto t = new foo;

 void f()

 {

 auto a = new foo;

 }

An object of type pointer to a collected type, is
called a collecting pointer. A collecting pointer
cannot participate in pointer arithmetic. That is,
there is no builtin meaning for addition, subtraction,
increment or decrement of a collected pointer. It
may also not be converted or cast to or from void*,
and it may not be the subject or result of a
reinterpret cast. It may only be initialized or
assigned a null pointer constant or another
collected pointer (possibly dynamic or static cast
from a base class or subclass).

If a complete collected object is destroyed, any
pointers to it or its base class subobjects are
assigned the null pointer value by the
implementation.

Given a time point at run-time of the program, we
will describe a directed graph as follows. There is
a root node. For each complete object of collected
type there is a node. For each non-null collecting
pointer that is not a member subobject of an object
of collected type, there is an edge from the root

node to the complete object of the subject of the
pointer. For each remaining non-null collecting
pointer, there is an edge from the collected object
of which it is a member to the complete object that
is the subject of the pointer. If there is no path
from the root node to a collected objects node, we
say the collected object is unreachable.

The implementation shall automatically destroy
collected objects, at some point between when it
first was unreachable and the end of the program,
or at the end of the program if they never become
unreachable. (As a quality of implementation issue
this should be as soon as reasonably possible
given reasonable resources.)

Implementation

If a program contains a collected type, a garbage
collector is linked into the program by the
implementation. The constructor and destructor of
both collected types and collecting pointers are
generated to talk to the garbage collector. The
garbage collector uses this information to track the
graph. Periodically the garbage collector searches
the graph using a generational or other garbage
collection algorithm, deleting objects as
appropriate.

Outstanding Issues

How do references to collected types work?
References are much like constrained pointers so
the specification of a reference to collected type
would be similar to collecting pointers.

Are the restrictions on storage duration necessary?
Couldn’t collected objects of non-dynamic storage
duration simply be ignored by the collector? What
about the subobject restriction? It was initially felt

that this would simplify usage and make it safer -
as well as easing implementation.

Is the assignment of null to pointers on delete
necessary or helpful? Again this was a safety
feature. We wanted collecting pointers if non-null
to always be pointing to a collected object. If they
are deleted manually, which would be unusual - we
thought this would be because of destructor timing,
and not resources - given that the performance
profile of these high-level objects is most likely not
paramount.

--

You received this message because you are
subscribed to the Google Groups "ISO C++ Standard
- Future Proposals" group.
To unsubscribe from this group and stop receiving
emails from it, send an email to
std-proposals+unsubscribe@isocpp.org​.
To post to this group, send email to
std-proposals@isocpp.org​.
Visit this group at
http://groups.google.com/a/isocpp.org/group/std-prop
osals/​.

Andrew Sandoval ​<sandoval@netwaysglobal.com> Wed, Feb 12, 2014 at 12:43 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

http://groups.google.com/a/isocpp.org/group/std-proposals/
http://groups.google.com/a/isocpp.org/group/std-proposals/

[Quoted text hidden]

So, what is the point to having garbage collection in
C++? My problem with gc in general is two fold: 1) It
tends to laziness -- that is developers use it and then
don't ever really understand object lifetime, etc. and
2) it is non-deterministic. The control over lifetime of
an object is left up to the implementation of the
collector -- not to the developer who should fully
understand the required lifetime.

I'm also not sure you've made the case for why
shared_ptr is insufficient. It, like unique_ptr, gives you
exact control over the lifetime of pointers. They are
tied to scope and reference counts as they are
actually used. I may be slow, but I don't understand
what you mean by "​Shared pointers cannot deal with
cycles.​" What cycles?

One of my complaints about managed languages is
that everything becomes a pointer -- everything is
made with new. Why bring that flaw into C++?

I also suspect that the idea of restricting
reinterpret_cast is going to be problematic. One of
the best things about C++ is that your hands are NOT
tied -- if you want to leak memory, it is expected that
you have a good reason for it. If you want to cast
something to void *, it is again expected that you have
a good reason for doing it. Everyone knows better
than to reinterpret_cast without a very good reason,
right?

Sorry to come down sounding negative, I personally
just don't see the need and don't want C++ to pickup
what I think are mistakes in managed languages.

Best wishes anyway.
[Quoted text hidden]

Bjorn Reese ​<breese@mail1.stofanet.dk> Wed, Feb 12, 2014 at 1:34 AM

To: andrewtomazos@gmail.com

On 02/11/2014 03:03 PM, Andrew Tomazos
wrote:

With shared_ptr<T>

Shared pointers cannot deal with cycles.
weak_ptr often does not have a
sensible place where it can be applied to break
cycles, and when it does
it is awkward to use. Shared pointer are also
awkward to use with this

This reminds me of a Boost proposal:

https://svn.boost.org/svn/boost/sandbox/block_ptr/
libs/smart_ptr/doc/index.html

Matthew Woehlke ​<mw_triad@users.sourceforge.net> Wed, Feb 12, 2014 at 3:12 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

https://svn.boost.org/svn/boost/sandbox/block_ptr/libs/smart_ptr/doc/index.html
https://svn.boost.org/svn/boost/sandbox/block_ptr/libs/smart_ptr/doc/index.html

On 2014-02-11 09:43, Andrew Sandoval wrote:
I'm also not sure you've made the case for why
shared_ptr is
insufficient. It, like unique_ptr, gives you exact control
over the
lifetime of pointers. They are tied to scope and
reference counts as they
are actually used. I may be slow, but I don't
understand what you mean by "Shared
pointers cannot deal with cycles." What cycles?

Let's say that A and B are classes that each keep a
record of other objects referencing them... Now say we
have:

pa = make_shared<A>();
pb = make_shared();
// both pa and pb have refcount 1
pa->connect(pb);
// *pa now has an sptr ref to *pb, likewise *pb to *pa
// refcount of pa, pb is 2

Now if pa and pb go out of scope, the objects are
inaccessible to the program but still reference each
other, and so are not freed by shared_ptr. The above
may be a contrived example, but that's the idea of a
self-referential cycle. Any useful GC needs to be able to
detect such cycles.

Basically, "reachable memory" is not a function of
refcounts but of what memory is accessible, directly or
indirectly, via all variables currently in scope.

--
Matthew
[Quoted text hidden]

Andrew Sandoval ​<sandoval@netwaysglobal.com> Wed, Feb 12, 2014 at 3:55 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org
Cc: mw_triad@users.sourceforge.net

[Quoted text hidden]

I still don't see it. if pa and pb go out of scope, the
reference count should drop to zero. connect() should
either have a shared_ptr at it's scope or use one at the
class scope and either way when the destructor fires
(at scope exit) the reference count should drop. If not I
would think there is a design flaw.

More importantly, the whole thing can probably be
simplified to start with so that one or both do not need
to be dynamically created. I might be alone in this, but
I find that I very rarely ever use new outside of
singletons. Almost everything is best kept owned
within a particular scope. On the rare occasions that
new is needed, the results always go to a shared_ptr,
either at local scope or in container at class scope, etc.

I'm not trying to pick on the idea, I just don't see it. And
maybe I'm overstating this a little bit, but I really think
that the languages that use GC have fundamental
flaws that hurt the quality of code written with them.
Way back when Java first came out, GC was the
salvation from pointers. The problem is that they just
made a mess of something that was never that bad to
start with. So, instead of leaks you get crashes due to
lifetime issues. It's a lot easier to catch a leak than to
solve a free-after-use crash. Objective-C, C#, they all
have that problem still, and they sort of ruin the whole
meaning of scope. RAII is a much better way IMO.

-Andrew

[Quoted text hidden]

David Rodríguez Ibeas ​<dibeas@ieee.org> Wed, Feb 12, 2014 at 4:13 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

The problem, Andrew, is that if you build a data
structure with a cycle, say a circular list, using
shared_ptr the first node has a count of 2 (original
pointer to the list, and last element in the list) while
the rest of the nodes might have a count of 1. Now
the list goes out of scope, and the external
reference is dropped, the count of the head of the
list drops from 2 to 1, but it cannot be released yet
as the tail of the list still holds a valid shared_ptr. At
this point each node in the list holds the next node
alive even though the program cannot access any
of the elements.
[Quoted text hidden]

Nevin Liber ​<nevin@eviloverlord.com> Wed, Feb 12, 2014 at 4:33 AM

Reply-To: std-proposals@isocpp.org
To: "std-proposals@isocpp.org" <std-proposals@isocpp.org>

On 11 February 2014 11:55, Andrew Sandoval
<​sandoval@netwaysglobal.com​> wrote:

I still don't see it. if pa and pb go out of scope,
the reference count should drop to zero.

Here is a trivial example:

struct A {

shared_ptr<A> p;
};

int main() {

auto a = make_shared<A>(); // refcount
== 1

a->p = a; // refcount == 2
} // refcount == 1

The refcount never goes to zero, so you have a
leak.

More details at
<​http://www.boost.org/doc/libs/1_55_0/libs/smart
_ptr/shared_ptr.htm​>.

While people do use GC as a crutch, there are
some data structures (such as lock free) which
are significantly easier to implement and reason
about if you have GC. Check out
<​http://www.drdobbs.com/lock-free-data-structur
es/184401865​> for a more in-depth description.
--
 Nevin ":-)" Liber
<mailto:​nevin@eviloverlord.com​> (847)
691-1404
[Quoted text hidden]

Klaim - Joël Lamotte ​<mjklaim@gmail.com> Wed, Feb 12, 2014 at 4:34 AM

http://www.boost.org/doc/libs/1_55_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_55_0/libs/smart_ptr/shared_ptr.htm
http://www.drdobbs.com/lock-free-data-structures/184401865
http://www.drdobbs.com/lock-free-data-structures/184401865

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

Hi, here are a few questions about this proposal:

1. This proposal is about a language extension, but
seems (if I didn't miss anything) to ignore C++11
minimal garbage collection hooks
 as explained by Stroustrup there:
http://www.stroustrup.com/C++11FAQ.html#gc-abi
 Did you take this into account?

2. Acronyms are harder to interpret, even in this
case.
 Instead of 'gc', I would suggest 'collected' (which
is the adjective you use to describe what the
keyword does to the type)

3. How do you expect generic algorithm developers
to work with types which can't be manipulated
through iterators/ranges?

4. Did you consider attaching the garbage collecting
logic to specific instances instead of types?

[Quoted text hidden]

xavi ​<gratal@gmail.com> Wed, Feb 12, 2014 at 5:13 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals <std-proposals@isocpp.org>

http://www.stroustrup.com/C++11FAQ.html#gc-abi

My main concern is whether a
language extension is really necessary
or it could be implemented as a library.
Is it possible to achieve a similar effect
with something like boost::intrusive_ptr
(which removes all the awkwardness of
enable_shared_from_this), where all
reference-counted objects inherit from
a ref-counter class, and add some
mechanism to detect cycles?
There might be certain things missing
in the language:
 - Being able to forbid automatic
storage for certain types.
 - Having some mechanism so that
objects can only be created inside a
smart pointer. Without inheritance, it's
easy, by making the constructors
private and make_ptr (or something
similar) a friend. With inheritance things
get much more complicated, so the
language might need to be changed
there.
 - Maybe tweak virtual inheritance so
that it's possible to inherit from two
ref-counted classes without significant
overhead.

If such a solution is possible, the
language changes to allow it will also
be useful in other situations, and it will
make it easy to develop custom
garbage-collection mechanisms in user
code.

2014-02-11 Klaim - Joël Lamotte
<​mjklaim@gmail.com​>:
[Quoted text hidden]

[Quoted text hidden]

Andrew Tomazos ​<andrewtomazos@gmail.com> Wed, Feb 12, 2014 at 5:25 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On Tuesday, February 11, 2014 7:34:52 PM UTC+1,
Klaim - Joël Lamotte wrote:
1. This proposal is about a language extension, but
seems (if I didn't miss anything) to ignore C++11
minimal garbage collection hooks
 as explained by Stroustrup there:
http://www.stroustrup.com/C++11FAQ.html#gc-abi
 Did you take this into account?

Yes. The safely-derived pointer concept is designed
for program-wide conservative collection such as the
Boehm collector. This proposal is for nominating
specific types for collection by a precise collector.
Collecting pointers are even more constrained than
safely-derived pointers, and they are better as the
constraints on collecting pointers are enforced at
compile-time.

2. Acronyms are harder to interpret, even in this
case.
 Instead of 'gc', I would suggest 'collected' (which is
the adjective you use to describe what the keyword
does to the type)

Noted. To be considered.

3. How do you expect generic algorithm developers
to work with types which can't be manipulated
through iterators/ranges?

Integration with collections and algorithms needs
some study, but the initial idea is that you use pointer
to T rather than T itself. So for example:

 vector<foo*> v = ...;

 for (auto x : v)
 x->do_something();

http://www.stroustrup.com/C++11FAQ.html#gc-abi

Clearly this doesn't work easily with user-defined
equality, hashing and comparison - this is no different
than the situation today with pointers, unique_ptrs or
shared_ptrs.

But having said that - since posting the proposal I
have come up with a pretty radical idea of how to deal
with this, but it is quite difficult to explain and I need to
work through the ramifications. To try to summarize it
(and fail), a collected type will be a "handle" type. It
will store its data members within an unnamed struct,
and it will have one "hidden" implicit member that is a
pointer to that struct. That way, what we call in the
original proposal a collecting pointer (foo*) will now be
the collected type itself (foo), and what was the
collected type (foo) is now an unnamed struct. Within
its member functions, the this pointer is set to the
implicit pointer member for looking up data members.
So from within the class specifier it will look like you
are defining a normal type and you can use it mostly
as normal, but when you copy construct it, it will be a
handle to the same instance. The collection graph is
then traced the same way, except using these implicit
pointer members and unnamed structs, rather than
the collecting pointers and collected types. I have to
double check that this isn't completely insane, and if
you couldn't follow what I just said, I don't blame you.

4. Did you consider attaching the garbage collecting
logic to specific instances instead of types?

Yes. It doesn't seem to work as well. If the entire
type is nominated, things seem to work out much
cleaner.

[Quoted text hidden]

Matthew Woehlke ​<mw_triad@users.sourceforge.net> Wed, Feb 12, 2014 at 5:54 AM

Reply-To: std-proposals@isocpp.org

To: std-proposals@isocpp.org

On 2014-02-11 14:13, xavi wrote:
My main concern is whether a language extension is
really necessary or it
could be implemented as a library.

I believe there are already libraries in the wild that do
this. IIRC, VTK (​http://vtk.org​) is one...

See also ​http://www.aosabook.org/en/vtk.html​ and
http://www.vtk.org/doc/release/5.10/html/classvtkGarbag
eCollector.html​.

There might be certain things missing in the language:
 - Being able to forbid automatic storage for certain
types.
 - Having some mechanism so that objects can only
be created inside a
smart pointer. Without inheritance, it's easy, by making
the constructors
private and make_ptr (or something similar) a friend.

These days you probably just want to friend
std::make_shared.

With inheritance things get much more complicated, so
the language
might need to be changed there.

I'm not sure a technical solution to this problem is
required. If someone wants to shoot themselves in the
foot by bypassing a base class that is intended to only
ever be constructed into a shared_ptr...

 - Maybe tweak virtual inheritance so that it's possible
to inherit from
two ref-counted classes without significant overhead.

Is this a problem in cases other than non-virtual
inheritance from an intrusive pointer class? (Do I miss

http://vtk.org/
http://www.aosabook.org/en/vtk.html
http://www.vtk.org/doc/release/5.10/html/classvtkGarbageCollector.html
http://www.vtk.org/doc/release/5.10/html/classvtkGarbageCollector.html

why this would be an issue with plain old
std::shared_ptr?)

--
Matthew
[Quoted text hidden]

Andrew Sandoval ​<sandoval@netwaysglobal.com> Wed, Feb 12, 2014 at 6:13 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On Tuesday, February 11, 2014 12:33:25 PM UTC-6,
Nevin ":-)" Liber wrote:
On 11 February 2014 11:55, Andrew Sandoval
<sand...@netwaysglobal.com> wrote:

I still don't see it. if pa and pb go out of scope, the
reference count should drop to zero.

Here is a trivial example:

struct A {

shared_ptr<A> p;
};

int main() {

auto a = make_shared<A>(); // refcount == 1
a->p = a; // refcount == 2

} // refcount == 1

The refcount never goes to zero, so you have a leak.

More details at
<​http://www.boost.org/doc/libs/1_55_0/libs/smart_ptr/s
hared_ptr.htm​>.

While people do use GC as a crutch, there are some
data structures (such as lock free) which are

http://www.boost.org/doc/libs/1_55_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_55_0/libs/smart_ptr/shared_ptr.htm

significantly easier to implement and reason about if
you have GC. Check out
<​http://www.drdobbs.com/lock-free-data-structures/18
4401865​> for a more in-depth description.
--
 Nevin ":-)" Liber <mailto:ne...@eviloverlord.com>
(847) 691-1404

Okay, I can see that. I just wonder if we can't find a
way to solve the specific problem rather than add a
language feature that is likely to be used as a crutch.
Probably just prejudice on my part from seeing too
many developers go after the quick and sloppy.
-Andrew
[Quoted text hidden]

xavi ​<gratal@gmail.com> Wed, Feb 12, 2014 at 6:21 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals <std-proposals@isocpp.org>

http://www.drdobbs.com/lock-free-data-structures/184401865
http://www.drdobbs.com/lock-free-data-structures/184401865

2014-02-11 Matthew Woehlke
<​mw_triad@users.sourceforge.net​>:
On 2014-02-11 14:13, xavi wrote:
My main concern is whether a
language extension is really
necessary or it
could be implemented as a library.

I believe there are already libraries in
the wild that do this. IIRC, VTK
(​http://vtk.org​) is one...

See also
http://www.aosabook.org/en/vtk.html
and
http://www.vtk.org/doc/release/5.10/ht
ml/classvtkGarbageCollector.html​.

There might be certain things missing
in the language:
 - Being able to forbid automatic
storage for certain types.
 - Having some mechanism so that
objects can only be created inside a
smart pointer. Without inheritance, it's
easy, by making the constructors
private and make_ptr (or something
similar) a friend.

These days you probably just want to
friend std::make_shared.

Intrusive reference-counting is more
efficient, and makes a lot of sense for
objects which are always supposed to
be reference-counted. It also allows
easily creating new "connected" shared

http://vtk.org/
http://www.aosabook.org/en/vtk.html
http://www.vtk.org/doc/release/5.10/html/classvtkGarbageCollector.html
http://www.vtk.org/doc/release/5.10/html/classvtkGarbageCollector.html

pointers from references, which seems
like a reasonable thing to do. Also,
befriending make_shared is a tricky
issue, and it makes *all* your
constructors effectively public.

With inheritance things get much
more complicated, so the language
might need to be changed there.

I'm not sure a technical solution to this
problem is required. If someone wants
to shoot themselves in the foot by
bypassing a base class that is
intended to only ever be constructed
into a shared_ptr...

Every constructor would need to be
protected, and then every derived class
will need to make their own
constructors protected and friend the
pointer maker, and so on... it's easy to
make mistakes, and there is some
repetition.

 - Maybe tweak virtual inheritance
so that it's possible to inherit from
two ref-counted classes without
significant overhead.

Is this a problem in cases other than
non-virtual inheritance from an
intrusive pointer class? (Do I miss why
this would be an issue with plain old
std::shared_ptr?)

It is an issue the moment you want to
enable_shared_from_this.

--

Matthew

--

--- You received this message
because you are subscribed to the
Google Groups "ISO C++ Standard -
Future Proposals" group.
To unsubscribe from this group and
stop receiving emails from it, send an
email to
std-proposals+unsubscribe@isocpp.or
g​.
To post to this group, send email to
std-proposals@isocpp.org​.
Visit this group at
http://groups.google.com/a/isocpp.org/
group/std-proposals/​.

[Quoted text hidden]

Dain Bray ​<dain.bray@gmail.com> Wed, Feb 12, 2014 at 6:26 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

What you are describing sounds similar to the
way C++/CLI added managed classes. If you
are not familiar with it, you might check that
out.
 I'm not sure if a GC is necessary, I find
shared types are rare, and cyclic shared types
rarer still--which weak ptr breaks well enough..
Seems like alot of complexity for little, if any
gain. Perhaps this would be better as a library
solution?
[Quoted text hidden]
[Quoted text hidden]

http://groups.google.com/a/isocpp.org/group/std-proposals/
http://groups.google.com/a/isocpp.org/group/std-proposals/

hun.nemethpeter@gmail.com
<hun.nemethpeter@gmail.com>

Wed, Feb 12, 2014 at 9:58
AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

I think the real question here is can we detect shared_ptr
cycles in compile time?

On Tuesday, February 11, 2014 7:33:25 PM UTC+1, Nevin
":-)" Liber wrote:
On 11 February 2014 11:55, Andrew Sandoval
<sand...@netwaysglobal.com> wrote:

I still don't see it. if pa and pb go out of scope, the
reference count should drop to zero.

Here is a trivial example:

struct A {

shared_ptr<A> p;
};

int main() {

auto a = make_shared<A>(); // refcount == 1
a->p = a; // refcount == 2

} // refcount == 1

The refcount never goes to zero, so you have a leak.

More details at
<​http://www.boost.org/doc/libs/1_55_0/libs/smart_ptr/shar
ed_ptr.htm​>.

While people do use GC as a crutch, there are some data
structures (such as lock free) which are significantly easier
to implement and reason about if you have GC. Check
out
<​http://www.drdobbs.com/lock-free-data-structures/18440
1865​> for a more in-depth description.

http://www.boost.org/doc/libs/1_55_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_55_0/libs/smart_ptr/shared_ptr.htm
http://www.drdobbs.com/lock-free-data-structures/184401865
http://www.drdobbs.com/lock-free-data-structures/184401865

--
 Nevin ":-)" Liber <mailto:ne...@eviloverlord.com> (847)
691-1404

[Quoted text hidden]

Patrick Michael Niedzielski
<patrickniedzielski@gmail.com>

Wed, Feb 12, 2014 at 10:52
AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On mar, 2014-02-11 at
15:58 -0800,
hun.nemethpeter@gmail.
com​ wrote:
> I think the real question
here is can we detect
shared_ptr cycles in
> compile time?

Not in the general case,
because you'd run into
the halting problem.
What a given
shared_ptr<> points to is
not known always known
at
compile-time. To know
whether there is a
shared_ptr cycle at any
point
during the duration of the
program, you have to do
static analysis on
the program with all
possible inputs. The
problem with that,

though, is
that you can't know
whether a given program
will halt on some given
set
of inputs, so you can't
even guarantee that your
compilation will
finish.

(As a side note, the way
the standard deals with
the halting problem at
compile time probably
wouldn't work here. In
cases like template
recursion and
preprocessor macros,
which are often said to be
"Turing-complete", the
standard places an
implementation-defined
limit
on the maximum
recursion depth. This
makes them not
Turing-complete,
technically, although
that's generally not
important.)

In trivial cases, you may
be able to detect them,
but that won't help
much, and doesn't solve
the problem. It may be a
useful diagnostic,
though.

Cheers,
Patrick Niedzielski

Geoffrey Romer ​<gromer@google.com> Wed, Feb 12, 2014 at 10:59 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On Tue, Feb 11, 2014 at 4:52 PM, Patrick
Michael Niedzielski
<​patrickniedzielski@gmail.com​> wrote:

On mar, 2014-02-11 at 15:58 -0800,
hun.nemethpeter@gmail.com​ wrote:
> I think the real question here is can we detect
shared_ptr cycles in
> compile time?

Not in the general case, because you'd run into
the halting problem.
What a given shared_ptr<> points to is not
known always known at
compile-time. To know whether there is a
shared_ptr cycle at any point
during the duration of the program, you have to
do static analysis on
the program with all possible inputs. The
problem with that, though, is
that you can't know whether a given program
will halt on some given set
of inputs, so you can't even guarantee that your
compilation will
finish.

Here's a simple example:

struct s {
 shared_ptr<s> ptr;
}

shared_ptr<s> f(int n) {
 static map<int, shared_ptr<s>> ptrs = {{1,
{nullptr}}};
 if (ptrs.find(n) == ptrs.end()) {
 if (n %2 == 0) {
 ptrs.emplace(n, f(n/2));
 } else {

 ptrs.emplace(n, f(3*n + 1));
 }
 }
 return ptrs[n];
}

int main() {
 int n;
 cin >> n;
 f(n);
 return 0;
}

If your compiler can tell you whether this
program contains any reference cycles, it has
just solved a problem that has defeated some of
the world's greatest mathematicians, called the
Collatz conjecture.

(As a side note, the way the standard deals with
the halting problem at
compile time probably wouldn't work here.

There's no "probably" about it; this will not work.

 In cases like template
recursion and preprocessor macros, which are
often said to be
"Turing-complete", the standard places an
implementation-defined limit
on the maximum recursion depth. This makes
them not Turing-complete,
technically, although that's generally not
important.)

In trivial cases, you may be able to detect them,
but that won't help
much, and doesn't solve the problem. It may be
a useful diagnostic,
though.

Cheers,
Patrick Niedzielski

[Quoted text hidden]

Patrick Michael Niedzielski
<patrickniedzielski@gmail.com>

Wed, Feb 12, 2014 at 12:06
PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On mar, 2014-02-11 at
16:59 -0800, Geoffrey
Romer wrote:
> Here's a simple
example:
>
> struct s {
> shared_ptr<s> ptr;
> }
>
> shared_ptr<s> f(int n) {
> static map<int,
shared_ptr<s>> ptrs =
{{1, {nullptr}}};
> if (ptrs.find(n) ==
ptrs.end()) {
> if (n %2 == 0) {
> ptrs.emplace(n,
f(n/2));
> } else {
> ptrs.emplace(n,
f(3*n + 1));
> }
> }
> return ptrs[n];
> }
>
> int main() {
> int n;
> cin >> n;
> f(n);
> return 0;
> }
>
> If your compiler can tell
you whether this program
contains any reference
> cycles, it has just
solved a problem that has

defeated some of the
world's
> greatest
mathematicians, called
the Collatz conjecture.

You're right in that that's
an example of an
undecidable program, but
there's a strategy to tell
that this program will not
have reference
cycles. The ptr inside s
can only point to nullptr,
because it is only
set during construction,
and never changed.
Every time you emplace,
you
are constructing a
shared_ptr<s> based on
another shared_ptr<s>.
The
only shared_ptr<s> that
can originally be
constructed from has a
nullptr
in its ptr member.
Assuming std::map's
emplace member
function doesn't
do any magic (which it
shouldn't, for obvious
reasons), all
shared_ptr<s> in the map
will point to the same
object of type s, who
has a null shared_ptr<s>.
In other words, no
reference cycles, found in
a way that avoids the

halting problem
altogether.

That said, that's not an
easy thing to get a
compiler to do that, and
it's not worth it.
Furthermore, it doesn't
solve the problem in
general, so this still can't
be done.

> > (As a side note, the
way the standard deals
with the halting problem
at
> > compile time probably
wouldn't work here.
>
> There's no "probably"
about it; this will not work.

Okay, I should clarify.
For using a strategy I
hinted below your
response (i.e., doing what
template recursion and
preprocessor macros do
by placing an
implementation-defined
limit on the maximum
depth of the
construct), there is no
"probably" about, yes. It
will definitely
work. Limiting the
theoretical Turing
completeness of the
language with
an analogous

implementation-defined
limit on recursion depth
and looping
count/depth would cause
this to be solvable in O(n)
time, based on the
number of loops or
recursive calls total (each
loop/recursive function
call could be checked in
O(1) time, with a
sufficiently large constant
based on the
implementation-defined
limit).

The "probably" was a
polite way of saying "this
is obviously
non-solution". At least, I
hope it's obvious why.

Cheers,
Patrick

Andrew Tomazos ​<andrewtomazos@gmail.com> Wed, Feb 12, 2014 at 1:27 PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On Tuesday, February 11, 2014 9:26:07 PM UTC+1,
Dain Bray wrote:
What you are describing sounds similar to the way
C++/CLI added managed classes. If you are not
familiar with it, you might check that out.

I am familiar, thanks. It is similar in part, but has
different goals. What Microsoft was trying to do was
modify C++ so it could run on their VM and so use
their VM libraries. A small part of that was precise
garbage collection. What we are proposing here is
some minimal clean additions purely to enable adding
a precise garbage collector for a subset of
user-nominated types.

Perhaps this would be better as a library solution?

shared_ptr is basically as good as it gets as a pure
library solution, and I compare the differences in the
proposal. In any case, something as
heavily-demanded as real garbage collection warrants
core language additions if needed - and I think the
"only pay for what you use" property of my proposal is
the right approach.

[Quoted text hidden]

Andrew Tomazos ​<andrewtomazos@gmail.com> Wed, Feb 12, 2014 at 1:56 PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org
Cc: hun.nemethpeter@gmail.com

On Wednesday, February 12, 2014 12:58:20 AM
UTC+1, ​hun.nem...@gmail.com​ wrote:
I think the real question here is can we detect
shared_ptr cycles in compile time?

Garbage collection has been a topic of intense study
in academia for decades and is on-going. If you are
interested I would encourage you to read up on it.
Section 7.5 to 7.8 in the dragon book 2nd edition has
a good primer.

The important thing to understand is that to do better
than shared_ptr, which cannot even detect cycles at
run-time, much less compile-time - we need to be able
to expose the full reachability graph to the garbage
collection algorithm. A shared_ptr cannot see the
whole graph - it can only see the inbound-side of
edges, not the outbound-side. That is, each
shared_ptr is an edge of the graph, and it can see
who it is pointing to, but it doesn't know who it belongs
to. Under the proposal the full graph is tracked by
instrumenting the constructors of collected types and
collecting pointers.

[Quoted text hidden]

Andrew Tomazos ​<andrewtomazos@gmail.com> Wed, Feb 12, 2014 at 2:36 PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org
Cc: mw_triad@users.sourceforge.net

On Tuesday, February 11, 2014 8:54:42 PM UTC+1,
Matthew Woehlke wrote:
On 2014-02-11 14:13, xavi wrote:
> My main concern is whether a language extension
is really necessary or it
> could be implemented as a library.

I believe there are already libraries in the wild that do
this. IIRC,
VTK (​http://vtk.org​) is one...

Like in many of the native extension environments of
managed languages and scripting languages, the VTK
garbage collector works with the same general
architecture as the proposal - however to register the
outbound-side of edges you need to manually call a
register function for each member collecting pointer
that a collected type contains. From this information
the full graph is formed.

It should be clear that such a system as a pure library
solution is extremely awkward to use and unsafe.
Under the proposal, this graph tracking is
instrumented automatically by the compiler. Given the
extremely high demand for this feature, it should be
clear that a core language addition is warranted. If
unconvinced by ease of use, than you should be at
least be convinced by the compile-time safety aspect.

[Quoted text hidden]

hun.nemethpeter@gmail.com
<hun.nemethpeter@gmail.com>

Wed, Feb 12, 2014 at 3:01
PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

http://vtk.org/

On Wednesday, February 12, 2014 1:59:29 AM UTC+1,
Geoffrey Romer wrote:

On Tue, Feb 11, 2014 at 4:52 PM, Patrick Michael
Niedzielski <patrickni...@gmail.com> wrote:

On mar, 2014-02-11 at 15:58 -0800,
hun.nem...@gmail.com wrote:
> I think the real question here is can we detect
shared_ptr cycles in
> compile time?

Not in the general case, because you'd run into the
halting problem.

And what about the non-general case?

struct s {
 shared_ptr<s> ptr;
}

This S struct refers to S as a shared_ptr.

Is it possible to create a safe struct pattern, where cycle is
not possible? This is smaller goal then a generic one.

So my idea is introducing a new attribute, called
[[cycle_free]] or [[acyclic]] or whatever that can be attached
to a class.

so

[[​cycle_free​]]
struct​ S ​{
 shared_ptr​<​S​>​ ptr​;
};

will gives a warning because a cycle is possible with this.
And a cycle_free class only contains cycle_free ones.
[Quoted text hidden]

Thiago Macieira ​<thiago@macieira.org> Wed, Feb 12, 2014 at 3:02 PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

Em ter 11 fev 2014, às 20:36:57, Andrew
Tomazos escreveu:
> It should be clear that such a system as a pure
library solution is
> extremely awkward to use and unsafe. Under
the proposal, this graph
> tracking is instrumented automatically by the
compiler. Given the
> extremely high demand for this feature, it
should be clear that a core
> language addition is warranted.

Can it wait for compile-time reflection support and
simply use that to detect
which members are collecting pointers?

--
Thiago Macieira - thiago (AT) ​macieira.info​ -
thiago (AT) ​kde.org
 Software Architect - Intel Open Source
Technology Center
 PGP/GPG: 0x6EF45358; fingerprint:
 E067 918B B660 DBD1 105C 966C 33F5
F005 6EF4 5358
[Quoted text hidden]

Geoffrey Romer ​<gromer@google.com> Wed, Feb 12, 2014 at 3:23 PM

Reply-To: std-proposals@isocpp.org

http://macieira.info/
http://kde.org/

To: std-proposals@isocpp.org

On Tue, Feb 11, 2014 at 6:06 PM, Patrick Michael
Niedzielski <​patrickniedzielski@gmail.com​>
wrote:

On mar, 2014-02-11 at 16:59 -0800, Geoffrey
Romer wrote:
> Here's a simple example:
>
> struct s {
> shared_ptr<s> ptr;
> }
>
> shared_ptr<s> f(int n) {
> static map<int, shared_ptr<s>> ptrs = {{1,
{nullptr}}};
> if (ptrs.find(n) == ptrs.end()) {
> if (n %2 == 0) {
> ptrs.emplace(n, f(n/2));
> } else {
> ptrs.emplace(n, f(3*n + 1));
> }
> }
> return ptrs[n];
> }
>
> int main() {
> int n;
> cin >> n;
> f(n);
> return 0;
> }
>
> If your compiler can tell you whether this
program contains any reference
> cycles, it has just solved a problem that has
defeated some of the world's
> greatest mathematicians, called the Collatz
conjecture.

You're right in that that's an example of an
undecidable program,

Well, strictly speaking it's not known to be
undecidable (and I wouldn't be surprised if it was
decidable), it's just evidently _extremely hard_ to
decide.

but
there's a strategy to tell that this program will not
have reference
cycles. The ptr inside s can only point to nullptr,
because it is only
set during construction, and never changed.
Every time you emplace, you
are constructing a shared_ptr<s> based on
another shared_ptr<s>. The
only shared_ptr<s> that can originally be
constructed from has a nullptr
in its ptr member. Assuming std::map's emplace
member function doesn't
do any magic (which it shouldn't, for obvious
reasons), all
shared_ptr<s> in the map will point to the same
object of type s, who
has a null shared_ptr<s>. In other words, no
reference cycles, found in
a way that avoids the halting problem altogether.

Argh, you're right, but that's a bug in my example,
not a fundamental point. I think this fixes it:

shared_ptr<s> f(int n) {
 static map<int, shared_ptr<s>> ptrs = {{1, {nullptr}}};
 if (n != 1 && ptrs[n].ptr == nullptr) {
 if (n %2 == 0) {
 ptrs[n].ptr = f(n/2);
 } else {
 ptrs[n].ptr = f(3*n + 1);
 }
 }
 return ptrs[n];

}

The point of the code is that it produces a reference
cycle if and only if the "hailstone sequence" starting
with the input number contains a cycle other than (4, 2,
1), so determining at compile time if this code can
produce a reference cycle requires deciding whether
there exists a cycle other than (4, 2, 1) in the hailstone
sequence of any number, which would be tantamount
to solving the Collatz conjecture.

That said, that's not an easy thing to get a
compiler to do that, and
it's not worth it. Furthermore, it doesn't solve the
problem in
general, so this still can't be done.

> > (As a side note, the way the standard deals
with the halting problem at
> > compile time probably wouldn't work here.
>
> There's no "probably" about it; this will not
work.

Okay, I should clarify. For using a strategy I
hinted below your
response (i.e., doing what template recursion and
preprocessor macros do
by placing an implementation-defined limit on the
maximum depth of the
construct), there is no "probably" about, yes. It
will definitely
work. Limiting the theoretical Turing
completeness of the language with
an analogous implementation-defined limit on
recursion depth and looping
count/depth would cause this to be solvable in
O(n) time, based on the
number of loops or recursive calls total (each
loop/recursive function

call could be checked in O(1) time, with a
sufficiently large constant
based on the implementation-defined limit).

The "probably" was a polite way of saying "this is
obviously
non-solution". At least, I hope it's obvious why.

Cheers,
Patrick

[Quoted text hidden]

Geoffrey Romer ​<gromer@google.com> Wed, Feb 12, 2014 at 4:10 PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On Tue, Feb 11, 2014 at 9:01 PM,
<​hun.nemethpeter@gmail.com​> wrote:

On Wednesday, February 12, 2014 1:59:29 AM
UTC+1, Geoffrey Romer wrote:

On Tue, Feb 11, 2014 at 4:52 PM, Patrick
Michael Niedzielski <patrickni...@gmail.com>
wrote:

On mar, 2014-02-11 at 15:58 -0800,
hun.nem...@gmail.com wrote:
> I think the real question here is can we detect
shared_ptr cycles in
> compile time?

Not in the general case, because you'd run into
the halting problem.

And what about the non-general case?

struct s {
 shared_ptr<s> ptr;
}

This S struct refers to S as a shared_ptr.

Is it possible to create a safe struct pattern,
where cycle is not possible? This is smaller goal
then a generic one.

So my idea is introducing a new attribute, called
[[cycle_free]] or [[acyclic]] or whatever that can
be attached to a class.

so

[[​cycle_free​]]
struct​ S ​{
 shared_ptr​<​S​>​ ptr​;
};

will gives a warning because a cycle is possible
with this. And a cycle_free class only contains
cycle_free ones.

First, a meta point: the problem of cycles in
reference-counting is very well-known, and has
been studied by a lot of very smart people. That
doesn't mean there are no good solutions left to
be found, but it does mean that you should be
very skeptical of any solution that didn't take a lot
of effort to find, or that doesn't contain an
identifiable deep insight that all those smart
people could plausibly have missed.

As for this specific proposal, would shared_ptr
have a [[cycle_free]] annotation? I don't believe
there's any way to selectively annotate some
instantiations of a template but not others, so you
have to pick once and for all. If it doesn't have that
annotation, then [[cycle_free]] types can't contain
shared_ptrs, which makes the annotation trivial
and completely useless. On the other hand, if it
does have that annotation, you've basically
destroyed the usefulness of shared_ptr: situations
where you need objects to point to other objects
of the same type are just too commonplace for
this to be viable. For example, it's basically the
only way to represent any sort of linked data
structure, such as a list, tree, or graph.

Worse, reference cycles can involve reference
types other than shared_ptr; any kind of
ownership relationship can participate in a cycle,
so you face the same dilemma about e.g. whether
to annotate unique_ptr. You've also glossed over

how this interacts with separate compilation: when
you compile something like

struct X {
 shared_ptr<Y> y;
 Z* z;
};

Y and Z may be incomplete types, in which case
the compiler has no way of knowing if they're
annotated or not. That might be solvable, but only
by making [[cycle_free]] even more restrictive and
useless.

--

You received this message because you are
subscribed to the Google Groups "ISO C++
Standard - Future Proposals" group.
To unsubscribe from this group and stop
receiving emails from it, send an email to
std-proposals+unsubscribe@isocpp.org​.
To post to this group, send email to
std-proposals@isocpp.org​.
Visit this group at
http://groups.google.com/a/isocpp.org/group/std-
proposals/​.

[Quoted text hidden]

Andrew Tomazos ​<andrewtomazos@gmail.com> Wed, Feb 12, 2014 at 4:54 PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

http://groups.google.com/a/isocpp.org/group/std-proposals/
http://groups.google.com/a/isocpp.org/group/std-proposals/

On Wednesday, February 12, 2014 7:10:30 AM
UTC+1, Geoffrey Romer wrote:
First, a meta point: the problem of cycles in
reference-counting is very well-known, and has been
studied by a lot of very smart people. That doesn't
mean there are no good solutions left to be found, but
it does mean that you should be very skeptical of any
solution that didn't take a lot of effort to find, or that
doesn't contain an identifiable deep insight that all
those smart people could plausibly have missed.

Actually, contrary to popular belief, and quite
fascinatingly, reference counting garbage collection
algorithms can breaking cycles quite easily. See this
paper from our friends at IBM:

 Concurrent Cycle Collection in Reference Counted
Systems, David F. Bacon and V.T. Rajan

https://www.cs.purdue.edu/homes/hosking/690M/Bac
on01Concurrent.pdf

In fact there are some that claim reference counting
with such cycle-breaking is more performant than the
trace / mark-and-sweep style algorithms - and there
are some major VMs that are considering changing to
it.

The problem for our purposes is, like tracing, these
cycle-breaking reference counted algorithms need
access to the full graph. shared_ptr doesn't give us
the outbound-side of edges.

As for, can we detect potential cycles at compile-time?
- who cares... We want to be able to have cycles, we
just want them to be collected.

[Quoted text hidden]

https://www.cs.purdue.edu/homes/hosking/690M/Bacon01Concurrent.pdf
https://www.cs.purdue.edu/homes/hosking/690M/Bacon01Concurrent.pdf

hun.nemethpeter@gmail.com
<hun.nemethpeter@gmail.com>

Wed, Feb 12, 2014 at 6:09
PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

As for this specific proposal, would shared_ptr have a
[[cycle_free]] annotation?

Good question. Maybe we should mark it as a [[link]] that
links a [[cycle_free]] struct.

I don't believe there's any way to selectively annotate
some instantiations of a template but not others, so you
have to pick once and for all. If it doesn't have that
annotation, then [[cycle_free]] types can't contain
shared_ptrs, which makes the annotation trivial and
completely useless. On the other hand, if it does have that
annotation, you've basically destroyed the usefulness of
shared_ptr: situations where you need objects to point to
other objects of the same type are just too commonplace
for this to be viable. For example, it's basically the only
way to represent any sort of linked data structure, such as
a list, tree, or graph.

I don't think so. For example a Html class that has a
Header and Body, and Body has h1, ul and other
elements... I think cycle is not possible in an Html
document. Do we really need so generic list, tree graph
data structures these days? They are basically list<T>,
TreeNode<T>, GraphNode<T> nowadays and we should
just state that GraphNode<T> can't link a GraphNode<T>.

Worse, reference cycles can involve reference types other
than shared_ptr; any kind of ownership relationship can
participate in a cycle, so you face the same dilemma about
e.g. whether to annotate unique_ptr. You've also glossed
over how this interacts with separate compilation: when
you compile something like

struct X {
 shared_ptr<Y> y;
 Z* z;
};

Y and Z may be incomplete types, in which case the
compiler has no way of knowing if they're annotated or not.
That might be solvable, but only by making [[cycle_free]]
even more restrictive and useless.

if
Y is struct Y { int a; };
and
Z is struct Z { char* a };
then this struct hierarchy is safe, isn't it? If this is safe we
should extend this pattern to maximum level.

This check can be performed after the compilation. In this
case a central data file is generated, where every
[[cycle_free]] and [[link]] is collected.

This approach is start from a safe core pattern where cycle
is not possible and should be carefully extended.
[Quoted text hidden]

Geoffrey Romer ​<gromer@google.com> Thu, Feb 13, 2014 at 4:52 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On Wed, Feb 12, 2014 at 12:09 AM,
<​hun.nemethpeter@gmail.com​> wrote:

As for this specific proposal, would shared_ptr
have a [[cycle_free]] annotation?

Good question. Maybe we should mark it as a
[[link]] that links a [[cycle_free]] struct.

I don't believe there's any way to selectively
annotate some instantiations of a template but
not others, so you have to pick once and for all.
If it doesn't have that annotation, then
[[cycle_free]] types can't contain shared_ptrs,
which makes the annotation trivial and
completely useless. On the other hand, if it does
have that annotation, you've basically destroyed
the usefulness of shared_ptr: situations where
you need objects to point to other objects of the
same type are just too commonplace for this to
be viable. For example, it's basically the only
way to represent any sort of linked data
structure, such as a list, tree, or graph.

I don't think so. For example a Html class that has
a Header and Body, and Body has h1, ul and
other elements... I think cycle is not possible in an
Html document.

A cycle is not possible in an HTML document, but
that's because the nodes form a tree structure,
and trees have no cycles. This is enforced by the
grammatical structure of HTML as a context-free
language, not by any kind of type system
requirement on nodes. What you're proposing is
different: you want the node *types* to form a strict
hierarchy, with nodes not permitted to link to other
nodes whose types have the same or a higher
level. HTML definitely does not have that property;
for example, you can have a that contains
 nodes, that themselves contain nodes.

Do we really need so generic list, tree graph data
structures these days? They are basically list<T>,
TreeNode<T>, GraphNode<T> nowadays and we
should just state that GraphNode<T> can't link a
GraphNode<T>.

How on earth do you represent a graph of more
than one node using a GraphNode<T> type that
can't link to other GraphNode<T>s?

More fundamentally, the fact is that some graphs
have cycles. Either your node type can represent
those graphs, and so can potentially contain
reference cycles, or it can't represent those
graphs, and so isn't a general graph node type. I
don't see how you can square that circle.

Worse, reference cycles can involve reference
types other than shared_ptr; any kind of
ownership relationship can participate in a cycle,
so you face the same dilemma about e.g.
whether to annotate unique_ptr. You've also
glossed over how this interacts with separate
compilation: when you compile something like

struct X {
 shared_ptr<Y> y;
 Z* z;
};

Y and Z may be incomplete types, in which case
the compiler has no way of knowing if they're
annotated or not. That might be solvable, but
only by making [[cycle_free]] even more
restrictive and useless.

if
Y is struct Y { int a; };

and
Z is struct Z { char* a };
then this struct hierarchy is safe, isn't it? If this is
safe we should extend this pattern to maximum
level.

This check can be performed after the
compilation. In this case a central data file is
generated, where every [[cycle_free]] and [[link]]
is collected.

This approach is start from a safe core pattern
where cycle is not possible and should be
carefully extended.

This pattern is safe, but extremely narrow, and
fundamentally cannot be extended to support
general computation in a useful way.
--

You received this message because you are
subscribed to the Google Groups "ISO C++
Standard - Future Proposals" group.
To unsubscribe from this group and stop
receiving emails from it, send an email to
std-proposals+unsubscribe@isocpp.org​.
To post to this group, send email to
std-proposals@isocpp.org​.
Visit this group at
http://groups.google.com/a/isocpp.org/group/std-p
roposals/​.

[Quoted text hidden]

hun.nemethpeter@gmail.com
<hun.nemethpeter@gmail.com>

Thu, Feb 13, 2014 at 6:02
AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

http://groups.google.com/a/isocpp.org/group/std-proposals/
http://groups.google.com/a/isocpp.org/group/std-proposals/

A cycle is not possible in an HTML document, but that's
because the nodes form a tree structure, and trees have
no cycles. This is enforced by the grammatical structure of
HTML as a context-free language, not by any kind of type
system requirement on nodes. What you're proposing is
different: you want the node *types* to form a strict
hierarchy, with nodes not permitted to link to other nodes
whose types have the same or a higher level. HTML
definitely does not have that property; for example, you
can have a that contains nodes, that themselves
contain nodes.

Yep.. You are right, this approach looks like a no-go. I have
no idea now how to enforce tree like, no-cycle structure on
type level but it would be useful.

Do we really need so generic list, tree graph data
structures these days? They are basically list<T>,
TreeNode<T>, GraphNode<T> nowadays and we should
just state that GraphNode<T> can't link a GraphNode<T>.

How on earth do you represent a graph of more than one
node using a GraphNode<T> type that can't link to other
GraphNode<T>s?

More fundamentally, the fact is that some graphs have
cycles. Either your node type can represent those graphs,
and so can potentially contain reference cycles, or it can't
represent those graphs, and so isn't a general graph node
type. I don't see how you can square that circle.

Looks like just a type attribute is not good enough here.

But we need a "value hierarchy level" thing. So a value can
accept only new stand-alone, or lower-level values. That
result in a tree like structure. But I don't know how to use it
in a compile-time check.

Worse, reference cycles can involve reference types
other than shared_ptr; any kind of ownership relationship
can participate in a cycle, so you face the same dilemma
about e.g. whether to annotate unique_ptr. You've also
glossed over how this interacts with separate
compilation: when you compile something like

struct X {
 shared_ptr<Y> y;
 Z* z;
};

Y and Z may be incomplete types, in which case the
compiler has no way of knowing if they're annotated or
not. That might be solvable, but only by making
[[cycle_free]] even more restrictive and useless.

if
Y is struct Y { int a; };
and
Z is struct Z { char* a };
then this struct hierarchy is safe, isn't it? If this is safe we
should extend this pattern to maximum level.

This check can be performed after the compilation. In this
case a central data file is generated, where every
[[cycle_free]] and [[link]] is collected.

This approach is start from a safe core pattern where
cycle is not possible and should be carefully extended.

This pattern is safe, but extremely narrow, and
fundamentally cannot be extended to support general
computation in a useful way.

I agree. I have no idea how to extend this pattern now.

[Quoted text hidden]

Mikhail Semenov ​<mikhailsemenov1957@gmail.com> Thu, Feb 13, 2014 at 7:39 PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On the positive note, I think it's a great idea to introduce
optional garbage collection.
As for the null assignment, it may be a good idea to
consider this option. If you assign null to the pointer than
the object that it points to will obviously be destroyed.
Now, delete: I once was playing with that idea. Imagine,
you got a graph or a database, you wan to delete a
node. You use delete and all the nodes (pointers) that
point to it will be assigned null automatically. There is an
issue of timing, of course. You start accessing those
nodes during garbage collection, it's not good.
After delete there should be a forced garbage collection.

On Tuesday, February 11, 2014 2:03:27 PM UTC,
Andrew Tomazos wrote:
Hey guys, this is a design I've been toying with (in the
abstract for some time actually). It needs a bunch of
work, but I would appreciate your feedback on this short
draft. Also, if you are aware of any overlapping past
proposals that would be great.

Thanks,
Andrew.

Precise Per-Type Cyclic Garbage Collection
(DRAFT 1)

[Quoted text hidden]

Sean Middleditch ​<sean.middleditch@gmail.com> Fri, Feb 14, 2014 at 5:47 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On Thursday, February 13, 2014 1:39:42 AM UTC-8,
Mikhail Semenov wrote:
On the positive note, I think it's a great idea to
introduce optional garbage collection.
As for the null assignment, it may be a good idea to
consider this option. If you assign null to the pointer
than the object that it points to will obviously be
destroyed.
Now, delete: I once was playing with that idea.
Imagine, you got a graph or a database, you wan to
delete a node. You use delete and all the nodes
(pointers) that point to it will be assigned null
automatically. There is an issue of timing, of course.
You start accessing those nodes during garbage
collection, it's not good.
After delete there should be a forced garbage
collection.

It's not currently feasible to allow deterministic
destruction of objects in a GC'd world without very
severe performance consequences in far too many
real-world scenarios. For larger server/HPC apps,
forcing a collection across many gigabytes of heap
spread out in a NUMA architecture just to delete one
object/graph would be non-optimal to the say the least.
Even a reasonable desktop today can have apps with
several or even dozens of gigabytes of managed
objects. For other devices, GC is often avoided (at
great pain in managed languages; see any discussion
on performance in C# or JavaScript on mobile devices
or even desktop-class game development for a more
thorough overview; I'm not interested in rehashing that
discussion) making the need for `delete` on objects in
many apps with small memory working sets relatively
moot. The number of use cases where `delete` on a
GC'd object would not be a severe performance issue is
pretty slim.
[Quoted text hidden]

Andrew Tomazos ​<andrewtomazos@gmail.com> Fri, Feb 14, 2014 at 6:27 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On Thursday, February 13, 2014 8:47:01 PM UTC+1,
Sean Middleditch wrote:
On Thursday, February 13, 2014 1:39:42 AM UTC-8,
Mikhail Semenov wrote:
On the positive note, I think it's a great idea to
introduce optional garbage collection.
As for the null assignment, it may be a good idea to
consider this option. If you assign null to the pointer
than the object that it points to will obviously be
destroyed.
Now, delete: I once was playing with that idea.
Imagine, you got a graph or a database, you wan to
delete a node. You use delete and all the nodes
(pointers) that point to it will be assigned null
automatically. There is an issue of timing, of course.
You start accessing those nodes during garbage
collection, it's not good.
After delete there should be a forced garbage
collection.

It's not currently feasible to allow deterministic
destruction of objects in a GC'd world without very
severe performance consequences in far too many
real-world scenarios. For larger server/HPC apps,
forcing a collection across many gigabytes of heap
spread out in a NUMA architecture just to delete one
object/graph would be non-optimal to the say the least.
Even a reasonable desktop today can have apps with
several or even dozens of gigabytes of managed
objects. For other devices, GC is often avoided (at
great pain in managed languages; see any discussion
on performance in C# or JavaScript on mobile devices
or even desktop-class game development for a more
thorough overview; I'm not interested in rehashing that
discussion) making the need for `delete` on objects in
many apps with small memory working sets relatively

moot. The number of use cases where `delete` on a
GC'd object would not be a severe performance issue
is pretty slim.

Ok, it sounds like the conclusion here is that a delete
expression should be ill-formed on a collecting pointer
type. If you want to delete a collected object, assign
your collecting pointer to nullptr and it will be destroyed
at some non-deterministic point in the future.

[Quoted text hidden]

Matthew Woehlke ​<mw_triad@users.sourceforge.net> Fri, Feb 14, 2014 at 6:28 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On 2014-02-13 04:39, Mikhail Semenov wrote:
You use delete and all the nodes (pointers) that point to
it will be
assigned null automatically.

Isn't this what weak pointers are for?

--
Matthew
[Quoted text hidden]

inkwizytoryankes@gmail.com
<inkwizytoryankes@gmail.com>

Fri, Feb 14, 2014 at 6:46
AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org
Cc: hun.nemethpeter@gmail.com

Its "easy" :> const variables cant create cycles. Its because
to create cycle you need modify existing pointer to point new
object (constructor is only exception there). This have big
draw back, modify data require coping lot of data.
I once created naive Lisp implementation, everything work
as excepted until I try add variables. This break constnes of
data structure and introduce cycles again because variables
are indented do point any data.
If noconst data stored in that structure cant reference
elements of that structure its still impossible possible to
create cyclic data.

On Wednesday, February 12, 2014 9:02:38 PM UTC+1,
hun.nem...@gmail.com​ wrote:

A cycle is not possible in an HTML document, but that's
because the nodes form a tree structure, and trees have
no cycles. This is enforced by the grammatical structure of
HTML as a context-free language, not by any kind of type
system requirement on nodes. What you're proposing is
different: you want the node *types* to form a strict
hierarchy, with nodes not permitted to link to other nodes
whose types have the same or a higher level. HTML
definitely does not have that property; for example, you can
have a that contains nodes, that themselves
contain nodes.

Yep.. You are right, this approach looks like a no-go. I have
no idea now how to enforce tree like, no-cycle structure on
type level but it would be useful.

[Quoted text hidden]

Mikhail Semenov ​<mikhailsemenov1957@gmail.com> Fri, Feb 14, 2014 at 7:15 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org
Cc: mw_triad@users.sourceforge.net

How would I organize a cyclic structure with shared/weak
pointers? When you use garbage collection you just use
pointers, all pointers own the structure the point to.
They are all equal.
[Quoted text hidden]
[Quoted text hidden]

Matthew Woehlke ​<mw_triad@users.sourceforge.net> Fri, Feb 14, 2014 at 7:24 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On 2014-02-13 16:15, Mikhail Semenov wrote:
On Thursday, February 13, 2014 8:28:21 PM UTC,
Matthew Woehlke wrote:
On 2014-02-13 04:39, Mikhail Semenov wrote:
You use delete and all the nodes (pointers) that point
to it will be
assigned null automatically.

Isn't this what weak pointers are for?

How would I organize a cyclic structure with
shared/weak pointers? When you
use garbage collection you just use pointers, all pointers
own the
structure the point to.
They are all equal.

I wasn't talking about std::weak_ptr specifically (which
isn't helpful for this purpose, no). I was talking about the
general concept of a weak pointer, which is a pointer
class where each object has a pointer to a shared
instance of the pointer class, which in turn has a pointer
the actual object. So that when you want to delete it, the
only place you need to null a pointer is on the pointer
class. (The pointer class itself is just strongly ref-counted
in the usual manner.)

(Hmm... actually a shared_ptr<unique_ptr<T>> might
work here... you'd have to do the double dereference by
hand, but you could specialize or subclass to work
around that.)
[Quoted text hidden]

Andrew Tomazos ​<andrewtomazos@gmail.com> Sat, Feb 15, 2014 at 12:07 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

On Wednesday, February 12, 2014 6:02:32 AM
UTC+1, Thiago Macieira wrote:
Em ter 11 fev 2014, às 20:36:57, Andrew Tomazos
escreveu:
> It should be clear that such a system as a pure
library solution is
> extremely awkward to use and unsafe. Under the
proposal, this graph
> tracking is instrumented automatically by the
compiler. Given the
> extremely high demand for this feature, it should be
clear that a core
> language addition is warranted.

Can it wait for compile-time reflection support and
simply use that to detect
which members are collecting pointers?

Sorry Thiago, I wasn't ignoring your good question, I
just needed some time to think about it.

If we imagine a pure library solution in which there are
two classes provided:

 std::collected_type
 std::collecting_ptr<T>

Deriving from std::collected_type marks the type as a
collected type. std::collecting_ptr<T> is a collecting
pointer where T must be a collected type.

First, I think that even if we could implement these,
the interface may be unacceptably inferior to a core
language feature. For example, "gc-unaware" raw
pointers and references to collected types are still
possible under this scheme, and I think we would like
this ill-formed for safety. Likewise, one could multiply
inherit from a collected type and a non-collected type.

Putting that aside, how would we implement these
classes with reflection? In the constructor of
std::collected_type we don't know what the (dynamic)
derived type of the complete object we are in is, so
even if we had a reflection facility that allowed us to
iterate data members, we can't get a handle on the
complete type. I think the instrumentation needs to
take place at the kind of level in the implementation
that works with generating vtables and similar, and I
don't think any of the (even in the abstract) reflection
mechanisms are planned to be so powerful.

[Quoted text hidden]

Thiago Macieira ​<thiago@macieira.org> Sat, Feb 15, 2014 at 3:27 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

Em sex 14 fev 2014, às 06:07:00, Andrew
Tomazos escreveu:
> In the constructor of std::collected_type we don't
know what the (dynamic)
> derived type of the complete object we are in is,
so even if we had a
> reflection facility that allowed us to iterate data
members, we can't get a
> handle on the complete type. I think the
instrumentation needs to take
> place at the kind of level in the implementation
that works with generating
> vtables and similar, and I don't think any of the
(even in the abstract)
> reflection mechanisms are planned to be so
powerful.

Is it necessary at the time of the constructor? Or is
it only necessary when
something begins collecting the type?

If I create a collectable type on the stack, it can't
get be GC'ed.

--
Thiago Macieira - thiago (AT) ​macieira.info​ - thiago
(AT) ​kde.org
 Software Architect - Intel Open Source
Technology Center
 PGP/GPG: 0x6EF45358; fingerprint:
 E067 918B B660 DBD1 105C 966C 33F5
F005 6EF4 5358

[Quoted text hidden]

Philipp Maximilian Stephani ​<p.stephani2@gmail.com> Sun, Feb 16, 2014 at 2:38 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

http://macieira.info/
http://kde.org/

Another bad thing about reference counting is that it
forces atomic operations, which can kill performance in
multi-threaded applications. The problem gets worse the
more cores per machine we get.
The problem I see is that garbage collection in managed
languages can only get better, and simplistic attempts
like reference counting can only get worse. I don't have
data, but I'd expect typical Java programs to outperform
equivalent reference-counted C++ programs even today
or in the near future.
[Quoted text hidden]

Jeffrey Yasskin ​<jyasskin@google.com> Sun, Feb 16, 2014 at 3:32 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

I haven't read the whole thread, but see
http://www.open-std.org/jtc1/sc22/wg21/docs/pape
rs/2007/n2297.html#cycles
and
http://www.open-std.org/jtc1/sc22/wg21/docs/pape
rs/2007/n2286.pdf
[Quoted text hidden]

Thiago Macieira ​<thiago@macieira.org> Sun, Feb 16, 2014 at 3:51 AM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2297.html#cycles
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2297.html#cycles
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2286.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2286.pdf

Em sáb 15 fev 2014, às 16:38:39, Philipp
Maximilian Stephani escreveu:
> Another bad thing about reference counting is
that it forces atomic
> operations, which can kill performance in
multi-threaded applications. The
> problem gets worse the more cores per
machine we get.
> The problem I see is that garbage collection in
managed languages can only
> get better, and simplistic attempts like reference
counting can only get
> worse. I don't have data, but I'd expect typical
Java programs to
> outperform equivalent reference-counted C++
programs even today or in the
> near future.

I think you're generalising based on sketchy
information. You've confessed to
having no data to prove your theory, so I can
make the opposite claim with
equally little data and we'd be no better off.

Modern CPUs share data in block units of cache
lines. In order to execute an
atomic operation, CPUs need to somehow ensure
that other execution units in
the system don't modify the same cacheline at the
same time. And there are
multiple techniques to do that, some used by very
high performance servers and
designed for this very kind of contentious sharing.
You're also discounting
advances in hardware techniques that could
improve performance, as you can see
from the intel TSX extensions.
[Quoted text hidden]

Evgeny Panasyuk ​<evgeny.panasyuk@gmail.com> Tue, Feb 18, 2014 at 6:57 PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

11 Feb 2014 г., 18:03:27 UTC+4 Andrew Tomazos:
We propose a core language feature that allows
objects of user-selected class types to be cyclically
garbage collected. Constraints on the usage of
class types so selected, and pointers to such class
types, are imposed to enable the implementation of
fast safe precise collection.

 I think it, or maybe most part of it, can be implemented
as library-only solution.
Refer following examples:
http://www.codeproject.com/Articles/912/A-garbage-coll
ection-framework-for-C
http://sourceforge.net/projects/smieciuch/
[Quoted text hidden]

David Krauss ​<potswa@gmail.com> Tue, Feb 18, 2014 at 8:02 PM

Reply-To: std-proposals@isocpp.org
To: std-proposals@isocpp.org

http://www.codeproject.com/Articles/912/A-garbage-collection-framework-for-C
http://www.codeproject.com/Articles/912/A-garbage-collection-framework-for-C
http://sourceforge.net/projects/smieciuch/

On Feb 18, 2014, at 4:57 PM, Evgeny
Panasyuk <​evgeny.panasyuk@gmail.com​>
wrote:

11 Feb 2014 г., 18:03:27 UTC+4 Andrew
Tomazos:
We propose a core language feature that
allows objects of user-selected class types to
be cyclically garbage collected. Constraints
on the usage of class types so selected, and
pointers to such class types, are imposed to
enable the implementation of fast safe
precise collection.

 I think it, or maybe most part of it, can be
implemented as library-only solution.
Refer following examples:
http://www.codeproject.com/Articles/912/A-garb
age-collection-framework-for-C
http://sourceforge.net/projects/smieciuch/

He acknowledges that already, but the core
language feature is supposed to improve the
interface by hooking the constructors to the
collector.

It would be nice to see the specific library
Andrew has in mind, though. Unconditional
registration by the constructor isn’t usually
called GC.

Many models are possible. I’ve made one
intrusive GC where the root pointers were
registered, and used to seed a
mark-and-sweep, and one where all the
managed pointers were registered, and instead
of mark-and-sweep it just checked whether
each allocation arena was occupied at all. Both
provided significant gains, and it seems like this

http://www.codeproject.com/Articles/912/A-garbage-collection-framework-for-C
http://www.codeproject.com/Articles/912/A-garbage-collection-framework-for-C
http://sourceforge.net/projects/smieciuch/

proposal is based on something completely
different. I wonder how it works, how generally
applicable it is, and what are the gains.

A general intrusive GC facility would ideally
accommodate several models. But which rough
edges need to be smoothed has to be spelled
out specifically, since reasonable libraries do
already essentially work.

I wish I understood how the C++11 GC support
features (reachable and safely-derived pointers)
are supposed to enable non-intrusive
implementations… or had an available
implementation to play with.

