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1 Introduction

Expression tree transformations at compile-time are based exclusively on knowledge of expression node types.
However, to successfully perform at least one kind of transformation, the pruning of duplicate sub-expression branches,
type information, alone, is insufficient. A candidate duplicate branch must be inspected to determine whether or not
it is a duplicate with respect to both its type and its associated variables.

To the best of the author’s knowledge, the latter requirement, inspecting for duplication with respect to associated
variables, is impossible to achieve when at least primitive types are used in the expression. To remedy this, a language
extension is herein proposed to facilitate the discrimination between different variables of the same type. The proposed
solution is a new operator, varid, which is a constant expression of type std::size t, and its value is unique to the
definition of its argument. The complementing variadic form is also implicitly proposed, following a similar syntax to
sizeof.

2 Motivation and Scope

Unique types for every terminal node, including what would otherwise be terminals of primitive type (such as
float), are required when compile-time duplicate sub-expression elimination is performed.

Consider the simple expression tree depicted in Figure 1, as a representation of the object returned by the code in
Listing 1. If terminal node a is of type A, b is of type B and both c0 and c1 are of type C, a sub-expression duplication
rule, exclusively based on types, would identify the sub-expression c0 +ab as being identical to c1 +ab. This, however,
would be mathematically incorrect.

Such duplicate expression identification seldom needs performing, since expressions are typically evaluated from the
terminals (i.e. a, b, c0, c1) to the the root; when a term is repeatedly used, such as ab, the evaluation of that same
term is not repeated because it would have been eagerly computed earlier on. This is not so when back-propagation
is performed on an expression (i.e. evaluating from the root to the terminals), such as in the case of the adjoint
automatic differentiation methodology. From this view, the ab expression path would be visited twice, becoming a
source of inefficiency.

1 template<class A, class B>
2 auto eva luate (A &&a , B &&b)
3 {
4 f loat c0 = . . .
5 f loat c1 = . . .
6
7 auto ab = a ∗ b ;
8 auto l e f t = c0 + ab ;
9 auto r i g h t = c1 + ab ;

10 auto root = l e f t / r i g h t ;
11
12 return root ;
13 }

Listing 1: Duplicate ab could be purged at root.
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Figure 1: The mechanism for purging ab would somehow
need to avoid purging right, since it is not identical to
left.
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3 Mitigating the problem

Generating unique types from lambdas reduces the need for introducing the proposed language feature. However,
it does not expunge it. Furthermore, it comes with its own subtlety.

This approach requires the original primitive types (e.g. float) to be wrapped by template class whose second
template argument is deduced from a minimal lambda definition. Since lambdas create new types, there is a guarantee
that each time the wrapper type is fully defined, a unique type will be generated. However, the subtlety is that multiple
instances of this type on the same line will all have the same type.

1 template<typename T, auto = []{}> struct Unique { . . . } ;
2
3 Unique<f loat> c0 ;
4 Unique<f loat> c1 ;
5 s t a t i c a s s e r t ( ! s td : : i s same v<dec l type ( c0 ) , dec l type ( c1 )>) ;

Listing 2: Creating unique types using lambdas

A second approach initially seemed promising but turned out to be of no help. The ‘address of’ operator can be
used in a constant expression context, but only for comparison. If it were possible to leverage this feature of the
language in the desired context it would have been minimally useful. Furthermore, if, in addition, it were possible to
capture the values being compared it would be sufficiently useful. However, neither are possible.

The following ‘address’ comparison is permissible:

1 template<typename E0 , typename E1>
2 auto constexpr isSame (E0 &&e0 , E1 &&e1 ) { return &e0 == &e1 ; }
3
4 f loat c0 ;
5 f loat c1 ;
6 s t a t i c a s s e r t ( isSame ( c0 , c0 ) ) ;
7 s t a t i c a s s e r t ( ! isSame ( c0 , c1 ) ) ;

Listing 3: Using the ‘address of’ operator

For it to be minimally useful in the context of determining duplicate sub-expressions, there would need to be the
capacity to inject the result of isSame into a binary expression node type. This step is impossible since isSame cannot
be evaluated to resolve the Boolean template parameter in Listing 4.

1 template<typename OP, typename E0 , typename E1 , bool isSame >
2 struct Binary { . . . } ;
3
4 template<typename E0 , typename E1>
5 auto add (E0 &&e0 , E1 &&e1 )
6 −> Binary<Add , E0 , E1 , isSame ( e0 , e1 )>
7 { . . . }
8
9 f loat c0 ;

10 f loat c1 ;
11 add ( c0 , c1 ) ; // error : non−type templa te argument i s not a constant expres s ion

Listing 4: Attempting to leverage ‘address of’

Even if it were possible to evaluate isSame to resolve the template parameter, it would be of no use for the particular
problem presented in Figure 1, and for the vast majority of expressions typically encountered. Suppose an expression
was of the form c0*c1 + c0*c2. The most that could be deduced is that c0*c1 and c0*c2 both have different
operands, but it does not tell us if their difference is the same kind of difference. Consequently, c0*c1 + c0*c1 would
be viewed in the same way as c0*c1 + c0*c2.

A final possibility is leveraging multiple virtual inheritance (Listing 5). The appeal of the approach is that indirectly
inherited duplicate base classes, by definition, are pruned out, which is exactly what is wanted. However, one problem
with using the approach occurs when directly inherited base classes are the same type, which is what would happen in
the case of the example presented in Figure 1: the root node would try to inherit Binary<Add, float, [...]> twice.
This problem is probably surmountable, perhaps by taking an approach like that used for implementing std::tuple,
pruning duplicate types in the process. This has not yet been explored. But, supposing a solution could be found to
the duplicate base class inheritance problem, multiple virtual inheritance comes with other constrictions that make
the approach generally unfavourable, like having to define member data statically and, consequently, initialise them
outside the class.

1 // i f E0 == E1 then a dup l i c a t e base type error i s t r i g g e r e d
2 template<typename OP, typename E0 , typename E1>
3 struct Binary : virtual E0 , virtual E1
4 {
5 Binary (E0 &&e0 , E1 &&e1 ) : E0( e0 ) , E1( e1 ) { . . . }
6 . . .
7 } ;

Listing 5: Attempting to leverage virtual inheritance
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4 Proposal

To provide the programmer with a means to distinguish branches that have the same type but do not represent the
same expression, a small language extension is proposed to resolve this problem. In Listing 6, if a new operator was
defined, varid, which returned a value which is unique to the variable given it then variable-related distinctions of
sub-expressions can be captured.

1 template<typename OP, typename E0 , typename E1 , auto ID0 , auto ID1>
2 struct Binary { . . . } ;
3
4 template<typename E0 , typename E1>
5 auto add (E0 &&e0 , E1 &&e1 )
6 −> Binary<Add , E0 , E1 , varid( e0 ) , varid( e1 )>
7 { . . . }

Listing 6: Using varid in the construction of a template expression node

Applying the change to the example in Figure 1, the left and right sub-expressions would have the types

1 Binary<Add , C, Binary<Mul , A, B, 1 , 2>, 3 , 5> // c0 + a∗b
2 Binary<Add , C, Binary<Mul , A, B, 1 , 2>, 4 , 5> // c1 + a∗b

Actual numbers returned by varid may be compiler dependent; the crucial point is that the generated expression
types are different.

5 Technical Specification

varid takes one argument which must be a named variable or reference and returns the compiler-specific index of
the variable, of type std::size t. The operator name would introduce a new keyword into the language. Listing 7
presents valid use cases. In particular, the capacity to ‘trace though’ from a reference to a definition is key requirement.
If such functionality were omitted, there would be no way to write expression node construction functions, like the
one presented in Listing 6.

1 f loat c0 ;
2 f loat c1 ;
3 s t a t i c a s s e r t (varid( c0 ) != varid( c1 ) ) ;
4
5 auto &cr = c0 ;
6 s t a t i c a s s e r t (varid( cr ) == varid( c0 ) ) ;

Listing 7: Valid uses of varid

Listing 8 presents invalid use cases. Attempting to directly use varid to return an index for literals or expressions
is beyond the scope of the proposal. varid would not be supported across compilation units. If the function is used
for a variable whose definition is not visible then a compilation error should be issued.

1 auto id0 = varid( f loat ) ; // error : t ypes not supported
2 auto id1 = varid (3 ) ; // error : l i t e r a l s not supported
3 auto id2 = varid( c0 ∗ c1 ) ; // error : e xpre s s i ons not supported

Listing 8: Invalid uses of varid

6 Possible Implementation

If it is the case that compilers typically have access to the line and starting column of identifiers, which appears to be
so based on the types generated by lambdas, then a possible implementation would define varid as the combination of
these two values. If, on the other hand, a compiler would need to retain this information just to speculatively support
varid then this may be an overly expensive requirement.

1 std : : s i z e t varid ( arg )
2 {
3 auto o f f s e t = std : : pow(2 , CHAR BIT ∗ ( s izeof ( std : : s i z e t ) / 2) ) ;
4 std : : s i z e t l i n e = $arg . l i n e ; // or however t h i s data i s accessed . . .
5 std : : s i z e t c o l = $arg . column ;
6 return l i n e + co l ∗ o f f s e t ;
7 }

Listing 9: A possible definition of varid

The proposed implementation returns a std::size t value which contains both the line and column values of
the definition of the variable in the translation unit. Having the line number in the lower range of the result would
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preferable for analysis or debugging since it is expected that this would be the more pertinent value. Access to it
could be performed by casting to the next smaller unsigned integer.

An alternative implementation may be available from Andrew Sutton’s work described in P2237R0, ‘Metaprogram-
ming’, p. 15. This paper describes a function, meta::location of(expr), returning line and column values. It
is unclear at the moment how much overlap there is between the specification of meta::location of and varid.
However, first impressions indicate there is much.

7 Technical Issues

In the case of temporary variables being passed indirectly to varid, such as the getID function presented in Listing
10, it would be preferable for the value of varid to be related to the temporary that was instantiated. Otherwise,
varid should return zero rather than triggering a compilation error.

1 template<typename E0> auto getID (E0 &&e0 ) { return varid( e0 ) ; }
2
3 auto id = getID (3) ; // error ?

Listing 10: Permit varid to be indirectly bound to a temporary?
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