
A proposal to add a matrix type to the C++ standard library

Document #: P1385R8
Date: 2023-05-15
Project: Programming Language C++
Audience: SG6, LEWG
Reply-to: Guy Davidson

<guy.cpp.wg21@gmail.com>
Bob Steagall
<bob.steagall.cpp@gmail.com>

Contents
Revision History 2

Abstract 4

1 Introduction 4
1.1 Goals . 4

2 Definitions 5
2.1 Mathematical terms . 5
2.2 Overloaded mathematical terms . 6
2.3 Terms pertaining to C++ types . 7

3 Scope 8
3.1 Functional requirements . 8
3.2 Considered but excluded . 8

4 Design considerations 9
4.1 Memory source . 9
4.2 Addressing model . 9
4.3 Memory ownership . 9
4.4 Capacity and resizability . 9
4.5 Element layout . 9
4.6 Element access and indexing . 10
4.7 Element type . 10
4.8 Mixed-element-type expressions . 10
4.9 Mixed-element-layout expressions . 10
4.10 Mixed-engine expressions . 10
4.11 Arithmetic customization . 11
4.12 Linear algebra and constexpr . 11

5 Interface description 12
5.1 Overview . 12

5.1.1 Template parameter nomenclature . 12
5.2 Header <matrix> synopsis . 13

1

mailto:guy.cpp.wg21@gmail.com
mailto:bob.steagall.cpp@gmail.com

Revision History
— R8 Update for pre-Varna 2023 mailing

— Refactored the matrix_storage_engine interface to be similar to that of mdspan.

— Added support for fixed-size, dynamically-allocated matrices.

— Added support for writable view engines, as appropriate.

— Updated the convenience aliases for declaring matrix objects.

— Replaced the idea of operation traits with that of custom operation traits.

— R7 Update for 2022-10 mailing

— Expanded motivation to highlight the difference between an array and a matrix.

— Reduced design to withdraw the vector class and unify around a single matrix class.

— R6 Update for post-Prague mailing

— Added initable_*_tag to specify types for which construction and assignment from an initializer_list
are acceptable.

— Added support for basic_mdspan for the engine types, vector, and matrix.

— Reduced the number of non-owning, view-style engine types to two: vector_view_engine and
matrix_view_engine (and consequently removed row_engine, column_engine, and transpose_engine).

— Added function templates inner_product() and outer_product().

— Removed iteration from the public interfaces of vector and all vector engines.

— Added free function templates begin(), end(), etc. to provide iteration over the elements of a vector object.

— R5 Update for pre-Prague mailing, based on feedback from Belfast.

— Removed element type predicate traits from the public interface.

— Removed is_complex from the public interface.

— Added mutating row, column, transpose, and submatrix “views” (in addition to the corresponding const
“views”).

— Changed type of NTTPs for sizes to size_t.

— Changed index_type to size_type for indexing.

— Changed names formerly *_view to *_engine.

— Removed matrix_ prefix from non-owning engine names.

— Removed nested boolean attributes from engines and math objects.

— Renamed const_*_tag and mutable_*_tag tag types to readable_*_tag and writable_*_tag, respectively.

— R4 Update to R3 for post-Belfast mailing.

— Include feedback from reviews in Belfast.

— R3 Update for Belfast 2019 meeting.

— Remove more erroneous references to row_vector and column_vector.

— D3 Last-minute update for Cologne 2019 meeting

— Remove erroneous references to row_vector and column_vector in the R2 text.

— R2 Update for pre-Cologne 2019 mailing

— Emphasized proposed std::math namespace

2

— Replaced row_vector and column_vector types with a single vector type to represent both.

— Removed discussion regarding 0-based or 1-based indexing in favor of 0-based.

— Reduced number of customization points within namespace std to two.

— R1 Update for post-Kona mailing.

— Includes feedback from LEWG(I) and joint SG14/SG19 session.

— D1

— Update for presentation at Kona 2019 that includes operation traits.

— R0

— Intial version for pre-Kona 2019 mailing.

3

Abstract
This document proposes a matrix type and supporting facilities to enable basic linear algebra functionality for the stan-
dard C++ library. The facilities proposed herein are pure addtions, requiring no changes to existing implementations.

This paper should be read after P1166, in which we describe a high-level set of expectations for what a linear algebra
library should contain.

1 Introduction
Linear algebra is a mathematical discipline of ever-increasing importance, with direct application to a wide variety of
problem domains, such as signal processing, computer graphics, medical imaging, scientific simulations, machine learn-
ing, analytics, financial modeling, and high-performance computing. And yet, despite the relevance of linear algebra to
so many aspects of modern computing, the C++ standard library does not include any linear algebra facilities. This paper
proposes to remedy this deficit for C++26.

1.1 Goals
We expect that typical users of a standard linear algebra library are likely to value two features above all else: ease-of-use
(including expressiveness), and high performance out of the box. This set of users will expect the ability to compose
arithmetical expressions of linear algebra objects similar to what one might find in a textbook; indeed, this has been
deemed a “must-have” feature by several participants in SG14 Linear Algebra meetings and conference calls. And for
a given arithmetical expression, they will expect run-time computational performance that is close to what they could
obtain with an equivalent sequence of function calls to a more “traditional” linear algebra library, such as LAPACK, Blaze,
Eigen, etc.

There also exists a set of linear algebra “super-users” who will value most highly a third feature – the ability to customize
underlying infrastructure in order to maximize performance for specific problems and computing platforms. These users
seek the highest possible run-time performance, and to achieve it, require the ability to customize any and every portion
of the library’s computational infrastructure.

With these high-level user requirements in mind, in this paper we propose an interface specification intended to achieve
the following goals:

1. To provide a matrix vocabulary types for representing the mathematical objects and fundamental operations rele-
vant to linear algebra;

2. To provide a public interface for linear algebra expressions that is intuitive, teachable, and mimics the expressive-
ness of traditional mathematical notation to the greatest reasonable extent;

3. To exhibit out-of-the-box performance in the neighborhood of that exhibited by an equivalent sequence of function
calls to a more traditional linear algebra library, such as LAPACK, Blaze, Eigen, etc.;

4. To provide a set of building blocks that manage the source, ownership, lifetime, layout, and access of the memory
required to represent the linear algebra vocabulary types;

5. To provide straightforward facilities and techniques for customization that enable users to optimize performance
for their specific problem domain on their specific hardware; and,

6. To provide a reasonable level of granularity for customization so that developers only have to implement aminimum
set of types and functions to integrate their performance enhancements with the rest of the linear algebra facilities
described here.

4

https://wg21.link/p1166

2 Definitions
When discussing linear algebra and related topics for a proposal like this one, it is important to note that there are
several overloaded terms (such as matrix, vector, dimension, and rank) which must be defined and disambiguated if such
discussions are to be productive. These terms have specific meanings in mathematics, as well as different, but confusingly
similar, meanings to C++ programmers.

In the following sections we provide definitions for relevant mathematical concepts, C++ type design concepts, and
describe how this proposal employs those overloaded terms in various contexts.

2.1 Mathematical terms
In order to facilitate subsequent discussion, we first offer the following informal set of definitions for the relevant math-
ematical concepts:

1. A vector space is a collection of vectors, where vectors are objects that may be added together and multiplied
by scalars. Euclidean vectors are an example of a vector space, typically used to represent displacements, as well
as physical quantities such as force or momentum. Linear algebra is concerned primarily with the study of vector
spaces.

2. The dimension of a vector space is the minimum number of coordinates required to specify any point within the
space.

3. A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. A matrix
having m rows and n columns is said to have size m x n. Although matrices can be used to solve systems of
simultaneous linear equations, they are most commonly used to represent linear transformations, solve linear
least squares problems, and to explore and/or manipulate the properties of vector spaces.

4. A vector is a matrix with only one row or one column. Although the vector is traditionally introduced as a tuple of
scalars, and a matrix as a tuple of vectors, as far as theorems of linear algebra are concerned there is no difference
between a single column matrix and a column vector, nor a single row matrix and a row vector.

5. The rank of a matrix is the dimension of the vector space spanned by its columns, which is equal to the dimension
of thevector space spanned by its rows. The rank is also equal to the maximum number of linearly-independent
columns and rows.

6. An element of a matrix is an individual member (number, symbol, expression) of the rectangular array comprising
the matrix, lying at the intersection of a given row and column. In traditional mathematical notation, row and
column indexing is 1-based, where rows are indexed from 1 tom and columns are indexed from 1 to n. Given some
matrix A, element a11 refers to the element in the upper left-hand corner of the array and element am,n refers to
the element in the lower right-hand corner.

7. A row vector is a matrix containing a single row; in other words, a matrix of size 1 x n. In many applications of
linear algebra, row vectors represent spatial vectors.

8. A column vector is a matrix containing a single column; in other words, a matrix of size m x 1. In many applica-
tions of linear algebra, column vectors represent spatial vectors.

9. Element transforms are non-arithmetical operations that modify the relative positions of elements in a matrix,
such as transpose, column exchange, and row exchange.

10. Element arithmetic refers to arithmetical operations that read or modify the values of individual elements inde-
pendently of other elements, such as assigning a value to a specific element or multiplying a row by some value.

11. Matrix arithmetic refers to the assignment, addition, subtraction, negation, multiplication, and determinant op-
erations defined for matrices, row vectors, and column vectors as wholes.

12. A rectangular matrix is a matrix requiring a full m x n representation; that is, a matrix not possessing a special
form, such as identity, triangular, band, etc.

13. A square matrix is a matrix where the number of rows equals the number of columns.

14. The identity matrix is a square matrix where all elements on the diagonal are equal to one and all off-diagonal
elements are equal to zero.

5

15. A triangular matrix is a matrix where all elements above or below the diagonal are zero; those with non-zero
elements above the diagonal are called upper triangular, while those with non-zero elements below the diagonal
are called lower triangular.

16. A band matrix is a sparse matrix whose non-zero entries are confined to a diagonal band, lying on the main
diagonal and zero or more diagonals on either side.

17. Decompositions are complex sequences of arithmetic operations, element arithmetic, and element transforms
performed upon a matrix that expose important mathematical properties of that matrix. Several types of decom-
position are often performed in solving least-squares problems.

18. Eigen-decompositions are decompositions performed upon a symmetric matrix in order to compute the eigen-
values and eigenvectors of that matrix; this is often performed when solving problems involving linear dynamic
systems.

2.2 Overloaded mathematical terms
This section describes how we use certain overloaded terms in this proposal and in future works.

Matrix

The termmatrix is frequently used by C++ programmers to mean a general-purpose array of arbitrary size. For example,
one of the authors worked at a company where it was common practice to refer to 4x4 arrays as “4-dimensional matrices.”

In this proposal, we use the word array only to mean a data structure whose elements are accessible using one or more
indices, and which has no invariants pertaining to higher-level or mathematical meaning.

We use matrix to mean the mathematical object as defined above in Mathematical terms, and matrix (in monospaced
font) to mean the C++ class template that implements the mathematical object.

Vector

Likewise, many C++ programmers often use the term vector as a synonym for “dynamically re-sizable array.” This bad
habit is reinforced by the unfortunate naming of std::vector.

This proposal uses the term vector to mean an element of a vector space, as described above in Mathematical terms above.
Further, we also mean vector generically to have both of the meanings set out in that section.

Dimension

In linear algebra, a vector space V is said to be of dimension n, or be n-dimensional, if there exist n linearly independent
vectors which span V. This is another way of saying that n is the minimum number of coordinates required to specify
any point in V. However, in common programming parlance, dimension refers to the number of indices used to access an
element in an array.

We use the term dimension both ways in this proposal, but try to do so consistently and in a way that is clear from
the context. For example, a rotation matrix used by a game engine is a two-dimensional data structure composed of
three-dimensional row and column vectors. A vector describing an electric field is an example of a one-dimensional data
structure that could be implemented as a three-dimensional column vector.

Rank

The rank of a matrix is the dimension of the vector space spanned by its columns (or rows), which corresponds to the
maximal number of linearly independent columns (or rows) of that matrix. Rank also has another meaning in tensor
analysis, where it is commonly used as a synonym for a tensor’s order.

However, rank also has a meaning in computer science where it is used as a synonym for dimension. In the C++ standard
at [meta.unary.prop.query], rank is described as the number of dimensions of T if T names an array, otherwise it is zero.

We avoid using the term rank in this proposal in the context of linear algebra, except as a quantity that might result from
performing certain decompositions wherein the mathematical rank of a matrix is computed.

6

2.3 Terms pertaining to C++ types
The following are terms used in this proposal that describe various aspects of how the mathematical concepts described
above might be implemented:

1. An array is a data structure representing an indexable collection of objects (elements) such that each element is
identified by at least one index. An array is said to be one-dimensional if its elements are accessible by a single
index; a multi-dimensional array is an array for which more than one index is required to access its elements.

2. The dimension of an array refers to the number of indices required to access an element of that array. The rank
of an array is a synonym for its dimension.

3. An engine is an implementation type that manages the resources associated with a matrix instance. This includes,
at a minimum, the storage-related aspects of, and access to, the elements of that matrix. It could also include
execution-related aspects, such as an execution context. In this proposal, an engine object is a private member of
a matrix. Other than as a template parameter, engines are not part of the matrix public interface.

4. The adjective dense refers to a matrix representation where storage is allocated for every element.

5. The adjective sparse refers to a matrix representation where storage is allocated only for non-zero elements;

6. Storage is used by this proposal as a synonym for memory.

7. Traits refers to a stateless class template that provides some set of services, normalizing those services over its set
of template parameters.

8. Row size and column size refer to the number of rows and columns, respectively, that a matrix represents, which
must be less than or equal to its row and column capacities, defined below.

9. Row capacity and column capacity refer to the maximum number of rows and columns, respectively, that a
matrix can possibly represent.

10. Fixed-size (FS) refers to an engine type whose row and column sizes are fixed at instantiation time and constant
thereafter.

11. Fixed-capacity (FC) refers to an engine type whose row and column capacities are fixed at instantiation time and
constant thereafter.

12. Dynamically re-sizable (DR) refers to an engine type whose row and column sizes and capacities may be changed
at run time.

7

3 Scope
We contend that the best approach for standardizing a set of linear algebra components for C++26 will be one that is
layered, iterative, and incremental. This paper is quite deliberately a “basic matrix arithmetic-only” proposal; it describes
what we believe is a foundational layer providing the minimum set of components and arithmetic operations necessary
to provide a reasonable, basic level of functionality.

Higher-level functionality can be specified in terms of the interfaces described here, and we encourage succession papers
to explore this possibility.

3.1 Functional requirements
The foundational layer, as described here, should include the minimal set of types and functions required to perform
matrix arithmetic in finite dimensional spaces. This includes:

— A matrix class template;

— Arithmetic operations for matrix addition, subtraction, negation, and multiplication;

— Arithmetic operations for scalar multiplication and division of matrices;

— Well-defined facilities for integrating new element types;

— Well-defined facilities for creating and integrating custom engines; and,

— Well-defined facilities for creating and integrating custom arithmetic operations.

3.2 Considered but excluded
Tensors

There has been a great deal of interest expressed in specifying an interface for general-purpose tensor processing in which
linear algebra facilities fall out as a special case. We exclude this idea from this proposal for two reasons. First, given the
practical realities of standardization work, the enormous scope of such an effort would very likely delay introduction of
linear algebra facilities until C++29 or later.

Second, and more importantly, implementing matrices as derived types or specializations of a general-purpose tensor
type is bad type design. Consider the following: a tensor is (informally) an array of mathematical objects (numbers
or functions) such that its elements transform according to certain rules under a coordinate system change. In a p-
dimensional space, a tensor of rank n will have pn elements. In particular, a rank-2 tensor in a p-dimensional space may
be represented by a p x p matrix having certain invariants related to coordinate transformation not possessed by all p x
p matrices.

These defining characteristics of a tensor lead us to the crux of the issue: every rank-2 tensor can be represented by
a square matrix, but not every square matrix represents a tensor. As one quickly realizes, only a small fraction of all
possible matrices are representations of rank-2 tensors.

All of this is a longway of saying that the class invariants governing amatrix type are quite different from those governing
a tensor type, and as such, the public interfaces of such types will also differ substantially.

From this we conclude that matrices are not Liskov-substitutable for rank-2 tensors, and therefore as matter of good
type design, matrices and tensors should be implemented as distinct types, perhaps with appropriate inter-conversion
operations.

Quaternions and octonions

There has also been interest expressed in including other useful mathematical objects, such as quaternions and octonions,
as part of a standard linear algebra library. Although element storage for these types might be implemented using the
engines described in this proposal, quaternions and octonions represent mathematical concepts that are fundamentally
different from those of matrices and vectors.

As with tensors, the class invariants and public interfaces for quaternions and octonions would be substantially different
from that of the linear algebra components. Liskov substitutability would not be possible, and therefore quaternions and
octonions should be implemented as types distinct from the linear algebra types.

8

4 Design considerations
The following describe several important aspects of the problem domain affecting the design of the proposed interface.
Importantly, these aspects are orthogonal, and are addressable through judicious combinations of template parameters
and implementation type design.

4.1 Memory source
Perhaps the first question to be answered is that of the source of memory in which elements will reside. One can easily
imagine multiple sources of memory:

— Elements reside in an external buffer allocated from the global heap;

— Elements reside in an external buffer allocated by a custom allocator and/or specialized heap;

— Elements reside in an external fixed-size buffer that exists independently of the matrix, not allocated from a heap,
and which has a lifetime greater than that of the matrix;

— Elements reside in a fixed-size buffer that is a member of the matrix itself;

— Elements reside collectively in a set of buffers distributed across multiple machines.

4.2 Addressing model
It is also possible that the memory used by a matrix might be addressed using what the standard calls a pointer-like type,
also known as a fancy pointer.

For example, consider an element buffer existing in a shared memory segment managed by a custom allocator. In this
case, the allocator might employ a fancy pointer type that performs location-independent addressing based on a segment
index and an offset into that segment.

One can also imagine a fancy pointer that is a handle to a memory resource existing somewhere on a network, and
addressing operations require first mapping that resource into the local address space, perhaps by copying over the
network or by some magic sequence of RPC invocations.

4.3 Memory ownership
The next important questions pertain to memory ownership. Should thememory in which elements reside be deallocated,
and if so, what object is responsible for performing the deallocation?

A matrix might own the memory in which it stores its elements, or it might employ some non-owning view type, like
mdspan, to manipulate elements owned by some other object.

4.4 Capacity and resizability
As with basic_string and vector, it is occasionally useful for a matrix to have excess storage capacity in order to
reduce the number of re-allocations required by anticipated future resizing operations. Some linear algebra libraries, like
LAPACK, account for the fact that a matrix object’s capacity may be different than its size. This capability was of critical
importance to the success of one author’s prior work in functional MRI image analysis.

In other problem domains, like Cartesian geometry, matrix objects are small and always of the same size. In this case,
the size and capacity are equal, and there is no need for a matrix to maintain or manage excess capacity.

4.5 Element layout
There are many ways to arrange the elements of a matrix in memory, the most common in C++ being row-major dense
rectangular. In Fortran-based libraries, the two-dimensional arrays used to represent matrices are usually column-major.
There are also special arrangements of elements for upper/lower triangular and banded diagonal matrices that are both
row-major and column-major. These arrangements of elements have been well-known for many years, and libraries like
LAPACK in the hands of a knowledgeable user can use them to implement code that is optimal in both time and space.

9

4.6 Element access and indexing
In keeping with the goal of supporting a natural syntax, and in analogy with the indexing operations provided by the
random-access standard library containers, it seems reasonable to provide both const and non-const indexing for reading
and writing individual elements.

4.7 Element type
C++ supports a relatively narrow range of arithmetic types, lacking direct support for arbitrary precision numbers and
fixed-point numbers, among others. Libraries exist to implement these types, and they should not be precluded from use
in a standard linear algebra library. It is possible that individual elements of a matrixmay allocate memory, and therefore
an implementation cannot assume that element types have trivial constructors or destructors.

4.8 Mixed-element-type expressions
In general, when multiple built-in arithmetic types are present in an arithmetical expression, the resulting type will have
a precision greater than or equal to that of the type with greatest precision in the expression. In other words, to the
greatest reasonable extent, information is preserved.

We contend that a similar principal should apply to expressions involving matrix objects where more than one element
type is present. Arithmetic operations involving matrix operands should, to the greatest reasonable extent, preserve
element-wise information.

For example, just as the result of multiplying a float by a double is a double, the result multiplying a matrix-of-float by
a matrix-of-double should be a matrix-of-double. We call the process of determining the resulting element type element
promotion.

4.9 Mixed-element-layout expressions
This library defaults to a dense, row-major layout of elements in matrix engines. However, there may be times when it
makes sense to specify a column-major layout for the instantiation of a matrix and/or the result of an operation.

For example, a developer may wish to multiply a matrix representing an affine transformation by a display list of vectors.
The display list is actually a matrix, where each column of the matrix is a vector from the list. To maximize locality of
reference, it might make sense for the transform matrix to be row-major, while the matrix representing the display list
and the result are both column-major.

We call the process of specifying the element layout resulting from an arithmetic operation layout promotion.

4.10 Mixed-engine expressions
In analogy with element type, matrix expressions may include mixed storage management strategies, as implemented
by their corresponding engine types. For example, consider the case of a fixed-size matrix multiplied by a dynamically-
resizable matrix. What is the engine type of the resulting matrix?

Expressions involving mixed engine types should not limit the availability of basic arithmetic operations. This means
that there should be a mechanism for determining the engine type of the result of such expressions. We call the process
of determining the resulting engine type engine promotion.

We contend that in most cases, the resulting engine type should be at least as “general” as the most “general” of the two
engine types. For example, one could make the argument that a dynamically-resizable engine is more general than a
fixed-size engine, and therefore the resulting engine type in an expression involving both these engine types should be
a dynamically-resizable engine.

However, there are cases in which it may be possible to choose a more performant engine at compile time. For exam-
ple, consider the case adding a fixed-size matrix and a dynamically-resizable matrix. Although size checking must be
performed at run time, the resulting engine might be specified as fixed-size.

10

4.11 Arithmetic customization
In pursuit of optimal performance, developers may want to customize specific arithmetic operations, such as matrix-
matrix ormatrix-vectormultiplication. Customizationmight be based on things like element layout inmemory, fixed-size
-vs- dynamically resizable representations, special hardware capabilities, etc.

One such possible optimization is the use of multiple cores, perhaps distributed across a network, to carry out multipli-
cation on very large pairs of matrices, particularly in situations where the operation is used to produce a third matrix
rather than modify one of the operands; the matrix multiplication operation is particularly amenable to this approach.

Developers may also wish to make use of SIMD intrinsics to enable parallel evaluation of matrix multiplication. This is
common in game development environments where programs are written for very specific platforms, where the make
and model of processor is well defined. This would impact on element layout and storage. Such work has already been
demonstrated in paper N4454.

It is possible that two operands may be associated with different arithmetic customizations. We call the process of
determining which of those two customizations to employ when performing the actual arithmetic operations operation
traits promotion.

4.12 Linear algebra and constexpr

The fundamental set of operations for linear algebra can all be implemented in terms of a subset of the algorithms defined
in the <algorithm> header, all of which are marked constexpr since C++20. Matrix and vector initialization is of course
also possible at compile time for objects whose sizes are known at compile time.

11

5 Interface description
In this section, we describe the various types, operators, and functions comprising the proposed interface. The reader
should note that the descriptions below are by no means ready for wording; rather, they are intended to foster further
discussions and refinements, and to serve as a guide for those hardy souls attempting to build implementations from this
specification.

5.1 Overview
The public interface is divided into several broad categories:

1. Tags, used as template arguments to help specify behavior;

2. Engines, which are implementation types that manage the resources associated with a matrix instance, including
memory ownership and lifetime, as well as element access;

3. Customoperation traits, which act as a “container” for optional, user-defined traits types that customize theways
in which element promotion, layout promotion, engine promotion, and arithmetic operations are to be carried out;
and,

4. The matrix class template, which provides a unified interface intended to model the corresponding mathematical
abstraction;

5. Customoperation selection traits provide themeans bywhich an arithmetic operator selects the operation traits
that will perform the arithmetic when one or both operands have custom operation traits. The traits class template
matrix_custom_operation_traits_selector is a library customization point that allows the user to specify how
the selection should be done;

6. Operators, which provide the desired syntax and carry out the intended arithmetic upon matrix (and scalar)
operands.

7. Alias templates, which provide a number of convenient services:

— Declaring commonly-used matrix specializations;

— Selecting custom operation traits at compile-time;

— Extracting the element type, layout type, engine type, and arithmetic traits type from a custom operation
traits type.

5.1.1 Template parameter nomenclature

In order to avoid excessive visual noise in the code displayed in subsequent sections of this paper, we use the following
abbreviation-based naming conventions for template parameters:

— Parameter names T, T1, T2, U, U1, and U2 represent element types.

— Parameter names ET, ET1, and ET2 represent engine types.

— Parameter names C, C1, and C2 represent the number of columns in a matrix engine.

— Parameter names R, R1, and R2 represent the number of rows in a matrix engine.

— Parameter names AT, AT1, and AT2 represent allocator types.

— Parameter names LT, LT1, and LT2 represent matrix layout types.

— Parameter name MVT represents a view engine’s functionality (e.g., transpose, row, column, submatrix, etc.).

— Parameter names COT, COT1, and COT2 represent custom operation traits types.

— Parameter names MT, MT1, and MT2 represent matrix types.

— Parameter names S, S1, and S2 represent scalar operand types.

12

5.2 Header <matrix> synopsis

#include <array>
#include <complex>
#include <concepts>
#include <deque>
#include <initializer_list>
#include <mdspan>
#include <type_traits>
#include <vector>

namespace std::math {

//- Tags that describe element layout.
//
struct matrix_layout
{

struct row_major;
struct column_major;
struct arbitrary;

};

//- Tags that describe the semantics of view engines.
//
struct matrix_view
{

struct const_negation;
struct const_conjugate;
struct const_hermitian;
struct identity;
struct const_identity;
struct transpose;
struct const_transpose;
struct column;
struct const_column;
struct row;
struct const_row;
struct submatrix;
struct const_submatrix;

};

//- Engine types.
//
template<class T>
struct matrix_scalar_engine;

template<class T, size_t R, size_t C, class AT, class LT>
class matrix_storage_engine;

template<class ET, class MVT>
class matrix_view_engine;

//- The primary math object type, matrix, and (in)equality operators.
//
template<class ET, class COT = void>
class matrix;

13

template<class ET1, class COT1, class ET2, class COT2>
inline constexpr bool
operator ==(matrix<ET1, COT1> const& m1, matrix<ET2, COT2> const& m2);

template<class ET1, class COT1, class ET2, class COT2>
inline constexpr bool
operator !=(matrix<ET1, COT1> const& m1, matrix<ET2, COT2> const& m2);

//- A traits type that chooses between two custom operation traits types; this class is
// a library customization point.
//
template<class OT1, class OT2>
struct matrix_custom_operation_traits_selector;

//- Arithmetic operators
//
template<class ET1, class COT1, class ET2, class COT2>
inline constexpr (see note)
operator +(matrix<ET1, COT1> const& m1, matrix<ET2, COT2> const& m2);

template<class ET1, class COT1, class ET2, class COT2>
inline constexpr (see note)
operator -(matrix<ET1, COT1> const& m1, matrix<ET2, COT2> const& m2);

template<class ET1, class COT1, class S2>
inline constexpr (see note)
operator *(matrix<ET1, COT1> const& m1, S2 const& s2);

template<class S1, class ET2, class COT2>
inline constexpr (see note)
operator *(S1 const& s1, matrix<ET2, COT2> const& m2);

template<class ET1, class COT1, class ET2, class COT2>
inline constexpr (see note)
operator *(matrix<ET1, COT1> const& m1, matrix<ET2, COT2> const& m2);

template<class ET1, class COT1, class S2>
inline constexpr (see note)
operator /(matrix<ET1, COT1> const& m1, S2 const& s2)

//- Alias templates for convenience when declaring matrix objects.
//
template<class T, size_t R, size_t C, class COT = void>
using fixed_size_matrix =

matrix<matrix_storage_engine<T, R, C, void, matrix_layout::row_major>, COT>;

template<class T, size_t R, class COT = void>
using fixed_size_column_vector =

matrix<matrix_storage_engine<T, R, 1, void, matrix_layout::column_major>, COT>;

template<class T, size_t C, class COT = void>
using fixed_size_row_vector =

matrix<matrix_storage_engine<T, 1, C, void, matrix_layout::row_major>, COT>;

14

template<class T, size_t R, size_t C, class COT = void>
using general_matrix =

matrix<matrix_storage_engine<T, R, C, allocator<T>, matrix_layout::row_major>, COT>;

template<class T, size_t R, class COT = void>
using general_column_vector =

matrix<matrix_storage_engine<T, R, 1, allocator<T>, matrix_layout::column_major>, COT>;

template<class T, size_t C, class COT = void>
using general_row_vector =

matrix<matrix_storage_engine<T, 1, C, allocator<T>, matrix_layout::row_major>, COT>;

template<class T, class COT = void>
using dynamic_matrix =

matrix<matrix_storage_engine<T, dynamic_extent, dynamic_extent,
allocator<T>, matrix_layout::row_major>, COT>;

template<class T, class COT = void>
using dynamic_column_vector =

matrix<matrix_storage_engine<T, dynamic_extent, 1,
allocator<T>, matrix_layout::column_major>, COT>;

template<class T, class COT = void>
using dynamic_row_vector =

matrix<matrix_storage_engine<T, 1, dynamic_extent,
allocator<T>, matrix_layout::row_major>, COT>;

//- Traits extractors, to help with creating custom operation traits.
//
template<class COT1, class COT2>
using select_custom_matrix_operation_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_addition_element_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_addition_layout_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_addition_engine_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_addition_arithmetic_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_subtraction_element_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_subtraction_layout_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_subtraction_engine_traits_t = (see note);

15

template<typename COT, typename MT1, typename MT2>
using matrix_subtraction_arithmetic_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_multiplication_element_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_multiplication_layout_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_multiplication_engine_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_multiplication_arithmetic_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_division_element_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_division_layout_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_division_engine_traits_t = (see note);

template<typename COT, typename MT1, typename MT2>
using matrix_division_arithmetic_traits_t = (see note);

} //- Namespace std::math

16

	Revision Historyrevision-history
	Abstractabstract
	Introduction
	Goals

	Definitions
	Mathematical terms
	Overloaded mathematical terms
	Terms pertaining to C++ types

	Scope
	Functional requirements
	Considered but excluded

	Design considerations
	Memory source
	Addressing model
	Memory ownership
	Capacity and resizability
	Element layout
	Element access and indexing
	Element type
	Mixed-element-type expressions
	Mixed-element-layout expressions
	Mixed-engine expressions
	Arithmetic customization
	Linear algebra and constexpr

	Interface description
	Overview
	Template parameter nomenclature

	Header <matrix> synopsis

