
0.1 General [uaxid.general]
1 This Annex describes the choices made in application of UAX #31 (“Unicode Identifier and Pattern Syntax”)

to C++ in terms of the requirements from UAX #31 and how they do or do not apply to this document.
In terms of UAX #31, this document conforms by meeting the requirements R1 “Default Identifiers” and
R4 “Equivalent Normalized Identifiers” from UAX #31. The other requirements from UAX #31, also listed
below, are either alternatives not taken or do not apply to this document.

0.2 R1 Default identifiers [uaxid.def]
0.2.1 General [uaxid.def.general]

1 UAX #31 specifies a default syntax for identifiers based on properties from the Unicode Character Database,
UAX #44. The general syntax is

<Identifier> := <Start> <Continue>* (<Medial> <Continue>+)*

where <Start> has the XID_Start property, <Continue> has the XID_Continue property, and <Medial> is
a list of characters permitted between continue characters. For C++ we add the character u+005f low line,
or _, to the set of permitted <Start> characters, the <Medial> set is empty, and the <Continue> characters
are unmodified. In the grammar used in UAX #31, this is

<Identifier> := <Start> <Continue>*
<Start> := XID_Start + @\textrm{\ucode{005f}}@
<Continue> := <Start> + XID_Continue

2 This is described in the C++ grammar in 5.11, where identifier is formed from identifier-start or identifier
followed by identifier-continue.

0.2.2 R1a Restricted format characters [uaxid.def.rfmt]
1 The clause R1a has been removed from UAX #31.

The characters that were added when meeting this requirement are now part of the default; the
contextual checks required by this requirement remain as part of the General Security Profile in
Unicode Technical Standard #39, Unicode Security Mechanisms.

0.2.3 R1b Stable identifiers [uaxid.def.stable]
1 An implementation of UAX #31 may choose to guarantee that identifiers are stable across versions of the

Unicode Standard. Once a string qualifies as an identifier it does so in all future versions.
2 C++ does not make this guarantee, except to the extent that UAX #31 guarantees the stability of the

XID_Start and XID_Continue properties.

0.3 R4 Equivalent normalized identifiers [uaxid.eqn]
1 UAX #31 requires that implementations describe how identifiers are compared and considered equivalent.
2 This document requires that identifiers be in Normalization Form C and therefore identifiers that compare

the same under NFC are equivalent. This is described in 5.11.

0.4 Requirements of UAX #31 for which no claims are made [uaxid.nonobservance]
1 UAX #31 version 15.1 has conformance requirements which either do not apply to C++ or which this

document makes no claim about.
—(1.1) R2. Immutable Identifiers
—(1.2) R3. Pattern_White_Space and Pattern_Syntax Characters
—(1.3) R5. Equivalent Case-Insensitive Identifiers
—(1.4) R6. Filtered Normalized Identifiers
—(1.5) R7. Filtered Case-Insensitive Identifiers
—(1.6) R8. Hashtag Identifiers

2 This document also makes no claim about additional conformance points in any versions of UAX #31 in
versions after 15.1.

1

