
Wording improvements for encodings and character sets
Document #: P2297R0
Date: 2021-01-31
Project: Programming Language C++
Audience: SG-16, CWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

Summary of changes

wchar_t

In the corewording, wchar_t ismodified to be allowed to represent code units of variable length
and shift state encodings. This aligns the standard with standard practices (the execution
encoding is UTF-16 on windows).

 

The wording mandated that the executions encoding be able to encode ”alert, backspace,
and carriage return”. This requirement is not used in the core wording (Tweaks of [5.13.3.3.1]
may be needed), nor in the library wording, and therefore does not seem useful, so it was not
added in the new wording. This will not have any impact on existing implementations.

New terminology

Basic character set

Formerly basic source character set. Represent the set of abstract (non-coded) characters in
the graphic subset of the ASCII character set. The term ”source” has been dropped because
the source code encoding is not observable nor relevant past phase 1.

The basic character set is used:

• As a subset of other encodings

• To restric accepted characters in grammar elements

• To restrict values in library

1

mailto:corentin.jabot@gmail.com


literal character set, literal character encoding, wide literal character set, wide lit-
eral character encoding

Encodings and associated character sets of narrow and wide character and string literals.
Implementation defined, and locale agnostic.

execution character set, execution character encoding, wide execution character
set, wide execution character encoding

Encodings and associated character sets of the encoding used by the library. isomorphic or
supersets of their literal counterparts. Separating literal encodings from libraries encoding
allows:

• To make a distinction that exists in practice and which was not previously admitted by
the standard previous.

• To keep the core wording locale agnostic.

The definition for these encodings has been moved to [library.intro]

Questions and bikesheding

• Do the terms of art code unit, code point, abstract character need to be defined?

• Are we happy with execution for library encodings? (alternatives : runtime, system,
environment, etc)

• Do we prefer literal character encoding or literal ordinary character encoding ?

Future works

• Review support for variable-length wide execution encodings in the library

• Review usages of the terms character

Wording

�? Terms and definitions [intro.defs]

[...]

Rationale: The notion of extended characters is removed, as, while the notion
of basic character is useful, there are only a few places where basic characters
should be handled differently from other characters (character meaning code
point here).
TODO: Should that definition apply to the UTF-8 (char8_t) encoding?

2



multibyte character
sequence of one or more bytes representing a member of the extended character set of
either the source or the execution environment Sequenceof oneormore codeunits representing
a member of the literal or exection character set.

[Note: The extended character set is a superset of the basic character set. —end note ]

[...]

�? Memory and objects [basic.memobj]

�? Memory model [intro.memory]

The fundamental storage unit in the C++ memory model is the byte. A byte is at least large
enough to contain any member of the basic execution character set represent any code unit
of the literal and execution character encodings and the eight-bit code units of the Unicode
UTF-8 encoding form and is composed of a contiguous sequence of bits, the number of which
is implementation-defined.

�? Fundamental types [basic.fundamental]

[...]

Rationale: The wording was not clear that it meant the basic source (rather
than execution) character set. ”implementation’s basic character set” is also a
fuzzy term. Is the basic source character set a coded character set?

Type char is a distinct type that has an implementation-defined choice of “signed char” or
“unsigned char” as its underlying type. The values of type char can represent distinct codes
for all members of the implementation’s basic character set all code units of the literal and
execution character encodings. The three types char, signed char, and unsigned char are
collectively called ordinary character types. The ordinary character types and char8_t are
collectively called narrow character types. For narrow character types, each possible bit pattern
of the object representation represents a distinct value. [Note: This requirement does not
hold for other types. —end note ] [Note: A bit-field of narrow character type whose width is
larger than the width of that type has padding bits; see ??. —end note ]

Rationale: The wording was implying that UTF-16 could not be used with
wchar_t (as it is a multibyte encoding and therefore can not represent all
values in a single wchar_t)

Type wchar_t is a distinct type that has an implementation-defined signed or unsigned integer
type as its underlying type. The values of type wchar_t can represent distinct codes for all
members of the largest extended character set specified among the supported locales all
code units of the wide literal and wide execution character encodings.

3



�? Phases of translation [lex.phases]

Translation phase 1 is affected by the removal of the definition of ”extended
character set”, no wording is currently provided as a few other papers are
redrafting phase 1 such that further modifications should not be necessary.

�? Character sets [lex.charset]

The basic source character set consists of 96 characters: the space character, the control
characters representing horizontal tab, vertical tab, form feed, and new-line, plus the following
91 graphical characters:

Edit the footnote associated with the above paragraph as follows:
Rationale:

• Abstract character is a more precise terminology to talk about the same
characters in different character sets or not in any character set.

• The second sentence seems incorrect. While the mapping in phase 1
must be documented, neither the source files nor the internal repre-
sentation should be observable by the program and as such do not
need to be documented. The paragraph further seems to imply that the
formerly-source basic character set applies to source files

The glyphs for the members of the basic source charac-
ter set are intended to identify abstract characters from
the subset of ISO/IEC 10646 which corresponds to the
ASCII character set. However, the mapping from source
file characters to the source character set (described in
translation phase 1) is specified as implementation-defined,
and therefore implementations must document how the
basic source characters are represented in source files.

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
_ { } [ ] # ( ) < > % : ; . ? * + - / ^ & | ~ ! = , \ " '

The universal-character-name construct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

A universal-character-name designates the character in ISO/IEC 10646 (if any) whose code
point is the hexadecimal number represented by the sequence of hexadecimal-digit s in the

4



universal-character-name. The program is ill-formed if that number is not a code point or if it
is a surrogate code point. Noncharacter code points and reserved code points are considered
to designate separate characters distinct from any ISO/IEC 10646 character. If a universal-
character-name outside the c-char-sequence, s-char-sequence, or r-char-sequence of a character-
literal or string-literal (in either case, including within a user-defined-literal) corresponds to a
control character or to a character in the basic source character set, the program is ill-formed.
A sequence of characters resembling a universal-character-name in an r-char-sequence does
not form a universal-character-name. [Note: ISO/IEC 10646 code points are integers in the
range [0, 10FFFF] (hexadecimal). A surrogate code point is a value in the range [D800, DFFF]
(hexadecimal). A control character is a character whose code point is in either of the ranges
[0, 1F] or [7F, 9F] (hexadecimal). —end note ]

The basic execution character set and the basic execution wide-character set shall each contain
all the members of the basic source character set, plus control characters representing alert,
backspace, and carriage return, plus a null character (respectively, null wide character), whose
value is 0. For each basic execution character set, the values of the members shall be non-
negative and distinct from one another. In both the source and execution basic character sets,
the value of each character after 0 in the above list of decimal digits shall be one greater than
the value of the previous. The execution character set and the execution wide-character set are
implementation-defined supersets of the basic execution character set and the basic execution
wide-character set, respectively. The values of the members of the execution character sets
and the sets of additional members are locale-specific.

The literal character set and wide literal character set are implementation-defined characters
set which shall contain all members of the basic character set plus an implementation-defined
set of additional members.

The literal character encoding andwide literal character encoding are the implementation-defined
character encodings of the literal character set and wide literal character set respectively such
that:

• Each code unit is represented by a single char or wchar_t respectively

• Each code point is represented by one or more code units.

• Each member of the basic character set is uniquely represented by a single byte whose
value is positive

• The NULL character (U+0000) is represented as a single code unit whose value, as read
via a glvalue of type char, is 0

• The code units representing each digit in the basic character set (U+0030 to U+0039)
have consecutive values

Do we still need the gvalue bit above? My understanding is that we are trying
to say char(L'\0') == 0.

[...]

5



�? Character literals [lex.ccon]

The grammar below will be further impacted by work to not replace non-basic
characters in phase 1

basic-c-char:
any member of the basic source character set except the single-quote ', back-
slash \, or new-line character

I think we want to limit to basic characters here

conditional-escape-sequence-char:
any member of the basic source character set that is not an octal-digit, a simple-
escape-sequence-char, or the characters u, U, or x

[...]

The kind of a character-literal, its type, and its associated character encoding are determined by
its encoding-prefix and its c-char-sequence as defined by . The special cases for non-encodable
character literals and multicharacter literals take precedence over their respective base kinds.
[Note: The associated character encoding for ordinary and wide character literals ordinary
and wide literal character encodings determines encodability, but does not determine the
value of non-encodable ordinary or wide character literals or ordinary or wide multicharacter
literals. The examples in [lex.ccon.literal] for non-encodable ordinary and wide character liter-
als assume that the specified character lacks representation in the execution literal character
set or execution literal wide-character set, respectively, or that encoding it would require more
than one code unit. —end note ]

Table 1: Character literals

Encoding Kind Type Associated char- Example
prefix acter encoding

none ordinary character literal char encoding of literal 'v'
non-encodable ordinary character literal int the execution encoding '\U0001F525'
ordinary multicharacter literal int character set 'abcd'

L wide character literal wchar_t encoding of wide literal L'w'
non-encodable wide character literal wchar_t the execution encoding L'\U0001F32A'
wide multicharacter literal wchar_t wide-character set L'abcd'

u8 UTF-8 character literal char8_t UTF-8 u8'x'

u UTF-16 character literal char16_t UTF-16 u'y'

U UTF-32 character literal char32_t UTF-32 U'z'

6



�? String literals [lex.string]

The grammars belowwill be further impacted by work to not replace non-basic
characters in phase 1

basic-s-char:
any member of the basic source character set except the double-quote ", back-
slash \, or new-line character

d-char:
any member of the basic source character set except:

space, the left parenthesis (, the right parenthesis ), the backslash \, and
the control characters

representing horizontal tab, vertical tab, form feed, and newline.

[...]

Table 2: String literals

Encoding Kind Type Associated Examples
prefix character en-

coding

none ordinary string literal array of n
const char

encoding
of the
execution
character
set literal
encoding

"ordinary string"
R"(ordinary raw string)"

L wide string literal array of n
const wchar_t

encoding
of the
execution
wide-character
set wide
literal
encoding

L"wide string"
LR"w(wide raw string)w"

u8 UTF-8 string literal array of n
const char8_t

UTF-8 u8"UTF-8 string"
u8R"x(UTF-8 raw
string)x"

u UTF-16 string literal array of n
const char16_-
t

UTF-16 u"UTF-16 string"
uR"y(UTF-16 raw
string)y"

U UTF-32 string literal array of n
const char32_-
t

UTF-32 U"UTF-32 string"
UR"z(UTF-32 raw
string)z"

A string-literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a
delimiter. The terminating d-char-sequence of a raw-string is the same sequence of characters

7



as the initial d-char-sequence. A d-char-sequence shall consist of at most 16 characters.

[Note: The characters '(' and ')' are permitted in a raw-string. Thus, R"delimiter((a|b))delimiter"
is equivalent to "(a|b)". —end note ]

[Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution
evaluated string literal. Assuming no whitespace at the beginning of lines in the following
example, the assert will succeed:

const char* p = R"(a\
b
c)";
assert(std::strcmp(p, "a\\\nb\nc") == 0);

—end note ]

[...]

�? User-defined literals [lex.ext]

[...]

If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S contains a literal
operator with parameter type unsigned long long, the literal L is treated as a call of the form

operator "" X(nULL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template but not
both. If S contains a raw literal operator, the literal L is treated as a call of the form

operator "" X("n")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form

operator "" X<'c1', 'c2', ... 'ck'>()

where n is the source character sequence c1c2...ck. [Note: The sequence c1c2...ck can only
contain characters from the basic source character set. —end note ]

If L is a user-defined-floating-point-literal, let f be the literal without its ud-suffix. If S contains a
literal operator with parameter type long double, the literal L is treated as a call of the form

operator "" X(fL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template but not
both. If S contains a raw literal operator, the literal L is treated as a call of the form

operator "" X("f")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form

operator "" X<'c1', 'c2', ... 'ck'>()

8



where f is the source character sequence c1c2...ck. [Note: The sequence c1c2...ck can only
contain characters from the basic source character set. —end note ]

�? Library introduction [library]

�? Method of description [library.c]

�? Other conventions [conventions]

�? Type descriptions [type.descriptions]

�? Character sequences [character.seq]

�? Execution encodings [execution encodings]

The execution encoding is the character encoding of the execution character set, such that all
members of the literal character set are represented, with the same value in the execution
character set and any sequence of characters in the literal character encoding represent the
same sequence of code points when interpreted as being in the execution encoding.

The wide execution encoding is the character encoding of the wide execution character set, such
that all members of the wide literal character set are represented, with the same value in
the wide execution character set and any sequence of characters in the wide literal character
encoding represent the same sequence of code points when interpreted as being in the wide
execution encoding.

The execution encoding and wide execution encoding are implementation-defined and may be
be affected by a call to setlocale(int, const char*), or by a change to a locale object, as
described in ?? and ??.

The paragraph below only becomes relevant if we have constexpr text trans-
formation, encodings or classification functions. I don’t think that’s the case
yet.

During constant evaluation, the execution encoding and execution character set are the literal
character set and wide literal character set respectively and are not affected by locale.

�? General [character.seq.general]

The C standard library makes widespread use of characters and character sequences that
follow a few uniform conventions:

• A letter is any of the 26 lowercase or 26 uppercase letters in the basic execution basic
character set.

• The decimal-point character is the (single-byte) character used by functions that convert
between a (single-byte) character sequence and a value of one of the floating-point

9



types. It is used in the character sequence to denote the beginning of a fractional part.
It is represented in [??] through [??] and ?? by a period, '.', which is also its value in the
"C" locale, but may change during program execution by a call to setlocale(int, const
char*), or by a change to a locale object, as described in ?? and ??.

• A character sequence is an array object A that can be declared as T A[N], where T is any of
the types char, unsigned char, or signed char, optionally qualified by any combination
of const or volatile. The initial elements of the array have defined contents up to and
including an element determined by some predicate. A character sequence can be
designated by a pointer value S that points to its first element.

�? Byte strings [byte.strings]

A null-terminated byte string, or ntbs, is a character sequencewhose highest-addressed element
with defined content has the value zero (the terminating null character); no other element in
the sequence has the value zero.

The length of an ntbs is the number of elements that precede the terminating null character.
An empty ntbs has a length of zero.

The value of an ntbs is the sequence of values of the elements up to and including the termi-
nating null character.

A static ntbs is an ntbs with static storage duration.

�? Multibyte strings [multibyte.strings]

A null-terminated multibyte string, or ntmbs, is an ntbs that constitutes a sequence of valid
multibyte characters, beginning and ending in the initial shift state.

Edit the footnote attached to the above sentence as follow:

An ntbs that contains characters only from the basic execution
character set is also an ntmbs. Each multibyte character then
consists of a single byte only contains characters represented
as a single byte is also an ntmbs .

A static ntmbs is an ntmbs with static storage duration.

�? Locales [locales]

�? Class locale [locale]

�? ctypemembers [locale.ctype.members]

charT do_widen(char c) const;
const char* do_widen(const char* low, const char* high, charT* dest) const;

10



Effects: Applies the simplest reasonable transformation from a char value or sequence
of char values to the corresponding charT value or values. The only characters for which
unique transformations are required are those in the basic source character set.

For any named ctype category with a ctype<charT> facet ctc and valid ctype_base::mask
value M, (ctc.is(M, c) || !is(M, do_widen(c)) ) is true.

The second form transforms each character *p in the range [low, high), placing the
result in dest[p - low].

Returns: The first form returns the transformed value. The second form returns high.

char do_narrow(charT c, char dfault) const;
const charT* do_narrow(const charT* low, const charT* high, char dfault, char* dest) const;

Effects: Applies the simplest reasonable transformation from a charT value or sequence
of charT values to the corresponding char value or values.

For any character c in the basic source character set the transformation is such that

do_widen(do_narrow(c, 0)) == c

�? Time library [time]

Table 3: Meaning of parse flags

Flag Parsed value

%a The locale’s full or abbreviated case-insensitive weekday name.

%Z The time zone abbreviation or name. A single word is parsed. This word
can only contain characters from the basic source character set that are
alphanumeric, or one of '_', '/', '-', or '+'.

%% A % character is extracted.

�? C++ and ISO C++ 2014 [diff.cpp14]

�? ??: lexical conventions [diff.cpp14.lex]

Change: Removal of trigraph support as a required feature.
Rationale: Prevents accidental uses of trigraphs in non-raw string literals and comments.
Effect on original feature: Valid C++ 2014 code that uses trigraphs may not be valid or may
have different semantics in this revision of C++. Implementations may choose to translate
trigraphs as specified in C++ 2014 if they appear outside of a raw string literal, as part of the
implementation-defined mapping from physical source file characters to the basic source
character set.

11



Acknowledgments

References

[N4878] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.link/N4878

12

https://wg21.link/N4878

	1 Abstract
	2 Summary of changes
	2.1 wchar_t
	2.2 1F514

	3 New terminology
	3.1 Basic character set
	3.2 literal character set, literal character encoding, wide literal character set, wide literal character encoding
	3.3 execution character set, execution character encoding, wide execution character set, wide execution character encoding

	4 Questions and bikesheding
	5 Future works
	6 Wording
	7 Terms and definitions
	8 Memory and objects
	8.1 Memory model
	8.2 Fundamental types

	9 Phases of translation
	10 Character sets
	10.1 Character literals
	10.2 String literals
	10.3 User-defined literals

	11 Library introduction
	12  Method of description
	12.1 Other conventions
	12.1.1 Type descriptions
	12.1.2 Character sequences
	12.1.3 Execution encodings
	12.1.4 General
	12.1.5 Byte strings
	12.1.6 Multibyte strings


	13 Locales
	13.1 Class locale
	13.1.1 ctype members


	14 Time library
	15 C++ and ISO C++ 2014
	15.1 ??: lexical conventions

	16 Acknowledgments
	17 References

