

Canonical Parallel Reduction

A Fixed Expression Structure for Run-to-Run Consistency

Andrew Drakeford

SG14 — Low Latency, Gaming, Embedded, Financial Trading

February 2026

We Want Deterministic Reduction

Parallel reduction that gives the same answer every time. Not accumulate.

The Gap in the Standard

std::accumulate

Sequential left-to-right fold

Specified sequence ✓

Reproducible ✓

Parallel X

THE GAP

No standard facility combines parallel execution with a specified expression.

Specified sequence ✓

Reproducible ✓

Parallel ✓

This is what we propose.

Same code, same data — potentially different result. That's the gap.

std::reduce

Unspecified grouping

Specified sequence X

Reproducible X

Parallel ✓

Different results for non-associative operations

Why SG14 Domains Can't Live With This

Finance

Audit reproducibility requires deterministic replay of analytics.
Audit trails require reproducibility.
Regression testing against a gold result is impossible.

Gaming

Deterministic lockstep networking breaks without bitwise reproducibility. Replay systems require identical results across clients.

Safety-Critical

DO-178C and IEC 61508 require deterministic computation for certification. Non-reproducible parallel code is a blocker.

Everyone here has either hit this problem or worked around it with a hand-rolled solution.

Two Approaches — Complementary, Not Competing

A: Binned Summation

Attack the accuracy — make the answer so precise that grouping doesn't matter.

Libraries (ReproBLAS, ExBLAS, Kulisch) use extra-precision arithmetic to make summation order-independent. Limited to operations with known error structure.

B: Fixed Evaluation Topology ← This Talk

Fix the shape of the reduction tree. The sequence of operations is then determined.
Same rounding error every time.

Works for ANY `binary_op` — not just addition.

General-purpose foundation.

This proposal fixes topology, not numerical error. For error bounds, see Higham §4.6.

They compose

A binned accumulator as `binary_op` inside a fixed topology gives you both accuracy and reproducibility.

The topology is the general-purpose foundation.

The Core Requirement

The topology must depend only on N and a user parameter L. Nothing else.

Not on thread count

Not on SIMD width

Not on platform

Not on execution strategy

Same N, same L → same shape → same sequence → same result.

The expression shape is fixed; execution scheduling remains free.

Given the same floating-point evaluation model (rounding mode, contraction, precision). See §6 of the paper.

Three Benefits of a Fixed Topology

1. Reproducibility

Fix the tree → fix the sequence
→ fix the result.

Same L, same N → same result,
every time,
any thread count, any SIMD
width.

Cross-platform identity
additionally requires
a matching FP evaluation model.

2. Relaxed Constraints

`std::reduce` requires
commutativity and associativity.

A fixed topology specifies every
operand position.

No reassociation → no
associativity.

No reordering → no
commutativity.

3. No Identity Element

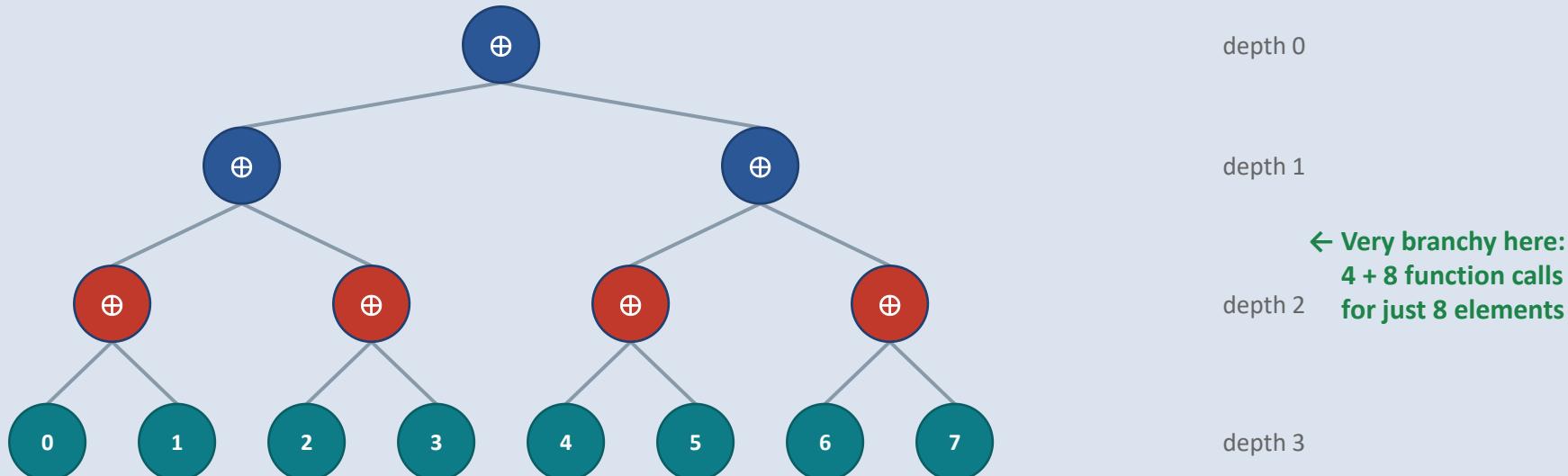
A canonical tree does not require
an algebraic
identity element.

A fixed topology uses absent-
operand propagation
for non-power-of-2 lengths.
Property of the tree,
not the operator.

One decision – agree on the tree – delivers all three.

- **Topological determinism** — expression is fixed for given (N, L) , independent of implementation/hardware/scheduling
- **Layout invariance** — results independent of memory alignment and physical placement
- **Execution independence** — subtrees may be evaluated in any order/concurrently
- **Cross-invocation reproducibility** — stable returned value across runs for same inputs and topology
- **Scope of guarantee** — applies to returned value only (not side-effect ordering)

Starting Point: Recursive Bisection



Problem: recursive calls dominate

Every \oplus node is a function call with a branch. $N-1$ interior nodes for N leaves. At the bottom levels the work per node is tiny but the overhead is not.

Good: $O(\log n \cdot \epsilon)$ accuracy

Balanced tree gives optimal error bounds.
Natural parallelism from independent subtrees.

Can we get the same balanced tree shape with a faster evaluation

Why a Tree?

Scalability

Independent subtrees execute concurrently. $O(\log N)$ depth enables efficient parallel decomposition across threads and SIMD lanes.

Accuracy

Balanced tree: $O(\log n \cdot \varepsilon)$ error bounds.
Left-to-right fold (accumulate): $O(n \cdot \varepsilon)$.
Strictly better — you gain accuracy for free.

What L gives you

L selects the lane count (the primary topology coordinate). If you pick L=16 but deploy on AVX-512, you still get full reproducibility — the canonical tree is unchanged. You may leave some hardware utilisation on the table, but correctness is never at risk.

Choose L for your reproducibility domain, not your deployment target.

From Naive to Proven

Naive: Binary Decomposition

$$N = 47 = 101111_2$$

→ Trees of size: $32 + 8 + 4 + 2 + 1$

Fast, branchless, cache-friendly. Each sub-tree is a known complete size.

But: final combination merges results of very different magnitudes — a 32-element partial sum next to a single element degrades numerical error bounds.

Proven: Iterated Pairwise (Shift-Carry)

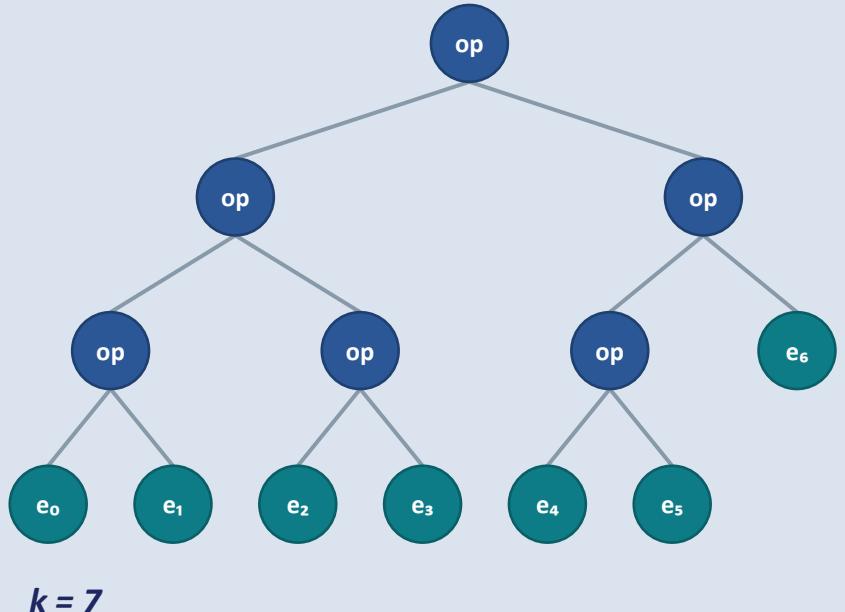
Process input in blocks of L lanes.

Within each block: L independent lanes accumulate vertically — branchless, straight-line, maps directly to SIMD.

Shift-carry maintains balanced partial results across blocks. $O(\log n \cdot \varepsilon)$ error — mathematically proven.

We propose to canonicalise the proven approach — not inventing, standardising.

The Canonical Tree ($k = 7$)



Parenthesized expression (fully determined by k):

$$((e_0 + e_1) + (e_2 + e_3)) + ((e_4 + e_5) + e_6)$$

Worked rounds

Round 1: pair $[e_0, e_1]$, $[e_2, e_3]$, $[e_4, e_5]$, carry e_6
→ 4 results

Round 2: pair $[op(e_0, e_1), op(e_2, e_3)]$, $[op(e_4, e_5), e_6]$
→ 2 results

Round 3: final combine → 1 result

Tree shape is fully determined by k alone – no runtime decisions.

Shift-Reduce: How It Executes

Remaining Sequence	Stack	Operation
$x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8$	\emptyset	shift x_1
$x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8$	x_1	shift x_2
$x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8$	$x_1 \ x_2$	reduce $a_1 = x_1 + x_2$
$x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8$	a_1	shift x_3
$x_4 \ x_5 \ x_6 \ x_7 \ x_8$	$a_1 \ x_3$	shift x_4
$x_5 \ x_6 \ x_7 \ x_8$	$a_1 \ x_3 \ x_4$	reduce $a_2 = x_3 + x_4$
$x_5 \ x_6 \ x_7 \ x_8$	$a_1 \ a_2$	reduce $b_1 = a_1 + a_2$
$x_5 \ x_6 \ x_7 \ x_8$	b_1	shift x_5
$x_6 \ x_7 \ x_8$	$b_1 \ x_5$	shift x_6
$x_7 \ x_8$	$b_1 \ x_5 \ x_6$	reduce $a_3 = x_5 + x_6$
$x_7 \ x_8$	$b_1 \ a_3$	shift x_7
x_8	$b_1 \ a_3 \ x_7$	shift x_8
\emptyset	$b_1 \ a_3 \ x_7 \ x_8$	reduce $a_4 = x_7 + x_8$
\emptyset	$b_1 \ a_3 \ a_4$	reduce $b_2 = a_3 + a_4$
\emptyset	$b_1 \ b_2$	reduce $c_1 = b_1 + b_2$
\emptyset	c_1	done!

The pattern: after n shifts, $ntz(n)$ reductions occur. Shift-shift-reduce, shift-shift-reduce-reduce, ... No branches — purely mechanical.

Dalton, Wang & Blainey (IBM, 2014) — "SIMDizing Pairwise Sums"

This is one efficient evaluation strategy. The Standard specifies the expression tree, not the evaluation schedule.

Iterated Pairwise – The Proposed Canonical Form

Known. Proven. Industry practice. Not inventing anything.

How It Works

Process input in blocks of L lanes.

Within each block: L independent lanes accumulate vertically — branchless, maps to SIMD.

Shift-carry maintains balanced partial results across blocks.

What It Gives You

Provably SIMD-efficient: inner loop is pure vertical accumulation.

$O(\log n \cdot \epsilon)$ error bounds — same as recursive pairwise.

Topology depends only on N and L. Same tree on AVX2,
NEON, SVE, or scalar.

Higham, Accuracy and Stability of Numerical Algorithms, §4.6. Dalton, Wang & Blainey (IBM, 2014).

This is the tree we propose to canonicalise.

Threading Scales Naturally

Fill Phase (Parallel)

Partition input into power-of-2 blocks aligned to L.
Each thread fills its blocks independently.

Embarrassingly parallel — no sharing, no races.
Power-of-2 boundaries align with tree level
boundaries
— merge is trivial.

Replay Phase (Canonical)

Merge follows the same canonical tree. Topology
unchanged
regardless of how many threads filled the blocks.

No awkward remainders at merge points.
No special-case logic for different-sized chunks.

1 thread or 128 threads — the canonical tree is the same.

Threads affect who computes what, not what is computed.

What It Looks Like

```
// Illustrative – name and signature not yet proposed

// Lane-based topology (portable across ABIs for a fixed L)
auto r1 = canonical_reduce_lanes<16>(first, last, init, op);

// Span-based shorthand (convenience: L = M / sizeof(V))
auto r2 = canonical_reduce<128>(first, last, init, op); // M=128 bytes

// Golden reference (L=1, single canonical tree, no lane interleaving)
auto gold = canonical_reduce<sizeof(double)>(first, last, init, op);
```

Same semantics as std::reduce

Same iterator requirements. Same binary_op. Adds a topology parameter that fixes the expression.

This is stable_sort vs sort

You choose whether you need the guarantee. No overhead if you don't use it.

x86 (AVX2) – Godbolt

```
NARROW (L=16): 0x40618f71f6379380
WIDE     (L=128): 0x40618f71f6379397
```

Variant	Throughput	vs accumulate
std::accumulate	5.4 GB/s	baseline
std::reduce	21.4 GB/s	+297%
Deterministic ST (L=16, 8-block)	26.5 GB/s	+391%
Deterministic MT (L=16, T=2)	21.2 GB/s	+293%

With tuned SIMD implementation, deterministic reduction can match or exceed std::reduce.

Flags: -O3 -std=c++20 -ffp-contract=off -fno-fast-math | Click Run on Godbolt — committee members can verify

godbolt.org/z/jbYqf1Eez

PERFORMANCE (CE timings vary; best-of-trials):

std::accumulate	1.489 ms	5.37 GB/s
std::reduce (no policy)	0.371 ms	21.56 GB/s
std::reduce(seq)	0.380 ms	21.07 GB/s
std::reduce(unseq)	1.496 ms	5.35 GB/s
std::reduce(par)	0.379 ms	21.12 GB/s
std::reduce(par_unseq)	1.493 ms	5.36 GB/s
deterministic_reduce NARROW (M=128)	0.313 ms	25.54 GB/s
deterministic_reduce WIDE (M=1024)	0.354 ms	22.62 GB/s

Overhead vs std::accumulate:

NARROW: -79.0%
WIDE: -76.2%

VERIFICATION BLOCK

Platform: x86-64
Selected: AVX2
SEED: 0x243f6a8885a308d3
N: 1000000
NARROW: 0x40618f71f6379380 (M=128, L=16)
WIDE: 0x40618f71f6379397 (M=1024, L=128)

ARM (NEON) – Godbolt

```
NARROW (L=16): 0x40618f71f6379380
WIDE     (L=128): 0x40618f71f6379397
```

Cross-Platform Identity

Identical hex output on a completely different ISA — same tree, same result.

Build-proof macros: `__aarch64__`, `__ARM_NEON`, `__ARM_NEON_FP`

```
-O3 -std=c++20 -march=armv8-a -ffp-contract=off -fno-fast-math
```

Same canonical tree on a different ISA → identical golden hex.

CE timing is illustrative only (VM load varies).

godbolt.org/z/v369Mbnvh

std::accumulate	0.776 ms	10.32 GB/s
std::reduce (no policy)	0.340 ms	23.55 GB/s
std::reduce(seq)	0.340 ms	23.50 GB/s
std::reduce(unseq)	0.775 ms	10.32 GB/s
std::reduce(par)	0.340 ms	23.56 GB/s
std::reduce(par_unseq)	0.779 ms	10.27 GB/s
deterministic_reduce NARROW (M=128)	0.272 ms	29.38 GB/s
deterministic_reduce WIDE (M=1024)	0.341 ms	23.43 GB/s

Overhead vs std::accumulate:

NARROW: -64.9%

WIDE: -56.0%

VERIFICATION BLOCK

Platform: ARM64

Selected: NEON

SEED: 0x243f6a8885a308d3

N: 1000000

NARROW: 0x40618f71f6379380 (M=128, L=16)

WIDE: 0x40618f71f6379397 (M=1024, L=128)

CUDA – Godbolt

```
L=16: 0x40618f71f6379380  
L=128: 0x40618f71f6379397
```

Canonical Topology on GPU

Evaluates the same canonical expression (§4).
Both L=16 and L=128 configs demonstrated.

Zero overhead vs CUB — parity with NVIDIA's
optimised reduction.

Golden Result Workflow

Produce golden hex on GPU, verify on CPU.
CPU golden matches GPU golden —
heterogeneous verification.

Same tree, different hardware, identical bits.

Zero overhead vs CUB; heterogeneous golden-result verification.

CUDA/NVCC; canonical vs CUB; includes L=16 and L=128

godbolt.org/z/x58GzE73q

Identical results assume matching FP evaluation model (contraction disabled, same rounding mode).

== PERFORMANCE (N=1e6) ==

CUB DeviceReduce::Sum	0.056 ms	143.36 GB/s
Fast atomic reduce	0.052 ms	153.04 GB/s
Canonical FAST (L=16)	0.548 ms	14.61 GB/s
Canonical FAST (L=128)	0.067 ms	118.84 GB/s

== PERFORMANCE vs CUB ==

Canonical FAST (L=16): 9.81x slower (10.2% of CUB throughput)
Canonical FAST (L=128): 1.21x slower (82.9% of CUB throughput)

VERIFICATION BLOCK

Platform: CUDA (Tesla T4)
SEED: 0x243f6a8885a308d3
N: 1000000
HOST N: 0x40618f71f6379380 (L=16)
GPU N: 0x40618f71f6379380 (L=16)
HOST W: 0x40618f71f6379397 (L=128)
GPU W: 0x40618f71f6379397 (L=128)
SWEEP: PASS ✓

What This Proposal Does NOT Guarantee

Does not guarantee cross-architecture IEEE identity.

Different ISAs may evaluate differently unless the FP model also matches.

Does not constrain the floating-point evaluation model.

Contraction, rounding mode, and precision remain implementation choices.

Does not replace std::reduce.

std::reduce remains the right choice when determinism is not required.

Does not impose runtime overhead unless chosen.

Opt-in only — existing code paths are unaffected.

Understanding the boundaries of a proposal is as important as understanding its benefits.

Why Standardise?

Kokkos

TBB

CUB

oneMKL

Different, implementation-specific topologies. No portable semantic contract.

Portable

Reproducibility across implementations.
Same canonical tree everywhere.

Composable

Works with execution policies and ranges. Generic components can demand specified reduction.

Certifiable

A standard specification is a certification target for regulated industries.

This is `stable_sort` vs `sort`. You choose whether you need the guarantee.

Feedback We're Seeking

Semantics first. API next.

1. Do you agree that deterministic parallel reduction is needed — that there's a gap?
2. Do you agree that a fixed topology (N and L only, not thread count or SIMD width) is the right approach?
3. Do you agree that basing this on proven industry practice (iterated pairwise) is a sound choice?
4. Would SG14 support forwarding this to LEWG for further semantic review?

Thank you. Discussion welcome.