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We Want Deterministic
Reduction

Parallel reduction that gives the same answer every time. Not accumulate.



The Gap in the Standard

std::accumulate
Sequential left-to-right fold

Specified sequence ✓
Reproducible ✓
Parallel ✗

THE GAP
No standard facility combines 
parallel execution with a 
specified expression.

Specified sequence ✓
Reproducible ✓
Parallel ✓

This is what we propose.

std::reduce
Unspecified grouping

Specified sequence ✗
Reproducible ✗
Parallel ✓

Different results for non-
associative operations

Same code, same data — potentially different result. That's the gap.



Why SG14 Domains Can't Live 
With This

Finance
Audit reproducibility requires 
deterministic replay of analytics.
Audit trails require 
reproducibility.
Regression testing against a gold 
result is impossible.

Gaming
Deterministic lockstep 
networking breaks without
bitwise reproducibility. Replay 
systems require
identical results across clients.

Safety-Critical
DO-178C and IEC 61508 require 
deterministic
computation for certification. 
Non-reproducible
parallel code is a blocker.

Everyone here has either hit this problem or worked around it with a hand-rolled solution.



Two Approaches —
Complementary, Not Competing

A: Binned Summation
Attack the accuracy — make the answer so precise 
that grouping doesn't matter.

Libraries (ReproBLAS, ExBLAS, Kulisch) use extra-
precision arithmetic to make
summation order-independent. Limited to operations 
with known error structure.

B: Fixed Evaluation Topology  ←
This Talk
Fix the shape of the reduction tree. The sequence of 
operations is then determined.
Same rounding error every time.

Works for ANY binary_op — not just addition. 
General-purpose foundation.

They compose

A binned accumulator as binary_op inside a fixed 
topology gives you both accuracy and 
reproducibility.

The topology is the general-purpose foundation.

This proposal fixes topology, not numerical error.  For error bounds, see Higham §4.6.



The Core Requirement

The topology must depend only on N and a user
parameter L.  Nothing else.

Not on thread count Not on SIMD width Not on platform
Not on execution
strategy

Same N, same L  → same shape  → same sequence  → same result.

The expression shape is fixed; execution scheduling remains free.

Given the same floating-point evaluation model (rounding mode, contraction, precision).  See §6 of the paper.



Three Benefits of a Fixed Topology

1. Reproducibility
Fix the tree → fix the sequence 
→ fix the result.

Same L, same N → same result, 
every time,
any thread count, any SIMD 
width.

Cross-platform identity 
additionally requires
a matching FP evaluation model.

2. Relaxed 
Constraints
std::reduce requires 
commutativity and associativity.

A fixed topology specifies every 
operand position.
No reassociation → no 
associativity.
No reordering → no 
commutativity.

3. No Identity 
Element
A canonical tree does not require 
an algebraic
identity element.

A fixed topology uses absent-
operand propagation
for non-power-of-2 lengths. 
Property of the tree,
not the operator.

One decision — agree on the tree — delivers all three.





Starting Point: Recursive Bisection

⊕

⊕ ⊕

⊕ ⊕ ⊕ ⊕

0 1 2 3 4 5 6 7

depth 0

depth 1

depth 2

depth 3

← Very branchy here:
4 + 8 function calls
for just 8 elements

Problem: recursive calls dominate
Every ⊕ node is a function call with a branch. N−1 
interior nodes
for N leaves. At the bottom levels the work per node 
is tiny but the overhead is not.

Good: O(log n · ε) accuracy
Balanced tree gives optimal error bounds.
Natural parallelism from independent subtrees.

Can we get the same balanced tree shape with a faster evaluation 
strategy?



Why a Tree?

Scalability
Independent subtrees execute concurrently. O(log N)
depth enables efficient parallel decomposition across
threads and SIMD lanes.

Accuracy
Balanced tree: O(log n · ε) error bounds.
Left-to-right fold (accumulate): O(n · ε).
Strictly better — you gain accuracy for free.

What L gives you
L selects the lane count (the primary topology coordinate). If you pick L=16 but deploy on AVX-512,
you still get full reproducibility — the canonical tree is unchanged. You may leave some hardware
utilisation on the table, but correctness is never at risk.

Choose L for your reproducibility domain, not your deployment target.



From Naive to Proven

Naive: Binary Decomposition
N = 47 = 101111₂
→ Trees of size: 32 + 8 + 4 + 2 + 1

Fast, branchless, cache-friendly. Each sub-tree is a
known complete size.

But: final combination merges results of very 
different
magnitudes — a 32-element partial sum next to a 
single
element degrades numerical error bounds.

Proven: Iterated Pairwise (Shift-
Carry)
Process input in blocks of L lanes.

Within each block: L independent lanes accumulate
vertically — branchless, straight-line, maps directly to
SIMD.

Shift-carry maintains balanced partial results across
blocks. O(log n · ε) error — mathematically proven.

→

We propose to canonicalise the proven approach — not inventing, 
standardising.



The Canonical Tree (k = 7)

op

op op

op op op e₆

e₀ e₁ e₂ e₃ e₄ e₅

k = 7

((e₀ + e₁) + (e₂ + e₃)) + ((e₄ + 
e₅) + e₆)

Parenthesized expression (fully determined by k):

Worked rounds

Round 1: pair [e₀,e₁], [e₂,e₃], [e₄,e₅], carry e₆
→ 4 results

Round 2: pair [op(e₀,e₁), op(e₂,e₃)], [op(e₄,e₅), e₆]
→ 2 results

Round 3: final combine → 1 result

Tree shape is fully determined by k alone — no runtime decisions.



Shift-Reduce: How It Executes
Remaining Sequence Stack Operation

x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ ∅ shift x₁

x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₁ shift x₂

x₃ x₄ x₅ x₆ x₇ x₈ x₁  x₂ reduce  a₁ = x₁ + x₂

x₃ x₄ x₅ x₆ x₇ x₈ a₁ shift x₃

x₄ x₅ x₆ x₇ x₈ a₁  x₃ shift x₄

x₅ x₆ x₇ x₈ a₁  x₃  x₄ reduce  a₂ = x₃ + x₄

x₅ x₆ x₇ x₈ a₁  a₂ reduce  b₁ = a₁ + a₂

x₅ x₆ x₇ x₈ b₁ shift x₅

x₆ x₇ x₈ b₁  x₅ shift x₆

x₇ x₈ b₁  x₅  x₆ reduce  a₃ = x₅ + x₆

x₇ x₈ b₁  a₃ shift x₇

x₈ b₁  a₃  x₇ shift x₈

∅ b₁  a₃  x₇  x₈ reduce  a₄ = x₇ + x₈

∅ b₁  a₃  a₄ reduce  b₂ = a₃ + a₄

∅ b₁  b₂ reduce  c₁ = b₁ + b₂

∅ c₁ done!

The pattern:  after n shifts, ntz(n) reductions occur.  Shift-shift-reduce, shift-shift-reduce-reduce, …  No branches — purely mechanical.

Dalton, Wang & Blainey (IBM, 2014) — "SIMDizing Pairwise Sums"

This is one efficient evaluation strategy. The Standard specifies the expression tree, not the evaluation schedule.



Iterated Pairwise — The Proposed 
Canonical Form

Known. Proven. Industry practice. Not inventing anything.

How It Works
Process input in blocks of L lanes.

Within each block: L independent lanes accumulate
vertically — branchless, maps to SIMD.

Shift-carry maintains balanced partial results across 
blocks.

What It Gives You
Provably SIMD-efficient: inner loop is pure vertical
accumulation.

O(log n · ε) error bounds — same as recursive 
pairwise.

Topology depends only on N and L. Same tree on 
AVX2,
NEON, SVE, or scalar.

Higham, Accuracy and Stability of Numerical Algorithms, §4.6.  Dalton, Wang & Blainey (IBM, 2014).

This is the tree we propose to canonicalise.



Threading Scales Naturally

Fill Phase (Parallel)
Partition input into power-of-2 blocks aligned to L.
Each thread fills its blocks independently.

Embarrassingly parallel — no sharing, no races.
Power-of-2 boundaries align with tree level 
boundaries
— merge is trivial.

Replay Phase (Canonical)
Merge follows the same canonical tree. Topology 
unchanged
regardless of how many threads filled the blocks.

No awkward remainders at merge points.
No special-case logic for different-sized chunks.

1 thread or 128 threads — the canonical tree is the same.

Threads affect who computes what, not what is computed.



What It Looks Like

// Illustrative — name and signature not yet proposed

// Lane-based topology (portable across ABIs for a fixed L)

auto r1 = canonical_reduce_lanes<16>(first, last, init, op);

// Span-based shorthand (convenience: L = M / sizeof(V))

auto r2 = canonical_reduce<128>(first, last, init, op); // M=128 bytes

// Golden reference (L=1, single canonical tree, no lane interleaving)

auto gold = canonical_reduce<sizeof(double)>(first, last, init, op);

Same semantics as std::reduce
Same iterator requirements. Same binary_op. Adds a
topology parameter that fixes the expression.

This is stable_sort vs sort
You choose whether you need the guarantee. No
overhead if you don't use it.



x86 (AVX2) — Godbolt

NARROW (L=16): 0x40618f71f6379380
WIDE   (L=128): 0x40618f71f6379397

Variant Throughput vs accumulate

std::accumulate 5.4 GB/s baseline

std::reduce 21.4 GB/s +297%

Deterministic ST (L=16, 8-block) 26.5 GB/s +391%

Deterministic MT (L=16, T=2) 21.2 GB/s +293%

With tuned SIMD implementation, deterministic reduction can 
match or exceed std::reduce.

Flags: -O3 -std=c++20 -ffp-contract=off -fno-fast-math |    Click Run on Godbolt — committee members can verify
godbolt.org/z/jbYqf1Eez

godbolt.org/z/jbYqf1Eez

Identical results assume matching FP evaluation model (contraction disabled, same rounding mode).





ARM (NEON) — Godbolt

NARROW (L=16): 0x40618f71f6379380
WIDE   (L=128): 0x40618f71f6379397

Cross-Platform Identity
Identical hex output on a completely different ISA — same tree, same result.

Build-proof macros: __aarch64__, __ARM_NEON, __ARM_NEON_FP

-O3 -std=c++20 -march=armv8-a -ffp-contract=off -fno-fast-math

Same canonical tree on a different ISA → identical golden hex.

CE timing is illustrative only (VM load varies).
godbolt.org/z/v369Mbnvh

godbolt.org/z/v369Mbnvh

Identical results assume matching FP evaluation model (contraction disabled, same rounding mode).





CUDA — Godbolt

L=16:  0x40618f71f6379380
L=128: 0x40618f71f6379397

Canonical Topology on GPU
Evaluates the same canonical expression (§4).
Both L=16 and L=128 configs demonstrated.

Zero overhead vs CUB — parity with NVIDIA's
optimised reduction.

Golden Result Workflow
Produce golden hex on GPU, verify on CPU.
CPU golden matches GPU golden —
heterogeneous verification.

Same tree, different hardware, identical bits.

Zero overhead vs CUB; heterogeneous golden-result verification.

CUDA/NVCC; canonical vs CUB; includes L=16 and L=128
godbolt.org/z/x58GzE73q

godbolt.org/z/x58GzE73q

Identical results assume matching FP evaluation model (contraction disabled, same rounding mode).





What This Proposal Does NOT 
Guarantee

✗ Does not guarantee cross-architecture IEEE identity.
Different ISAs may evaluate differently unless the FP model also matches.

✗ Does not constrain the floating-point evaluation model.
Contraction, rounding mode, and precision remain implementation choices.

✗ Does not replace std::reduce.
std::reduce remains the right choice when determinism is not required.

✗ Does not impose runtime overhead unless chosen.
Opt-in only — existing code paths are unaffected.

Understanding the boundaries of a proposal is as important as understanding its benefits.



Why Standardise?

Kokkos TBB CUB oneMKL

Different, implementation-specific topologies. No portable semantic contract.

Portable
Reproducibility across 
implementations.
Same canonical tree everywhere.

Composable
Works with execution policies 
and
ranges. Generic components can 
demand
specified reduction.

Certifiable
A standard specification is a 
certification
target for regulated industries.

This is stable_sort vs sort. You choose whether you need the 
guarantee.



Feedback We're Seeking
Semantics first. API next.

1.  Do you agree that deterministic parallel reduction is needed — that there's a gap?

2.  Do you agree that a fixed topology (N and L only, not thread count or SIMD width) is the 
right approach?

3.  Do you agree that basing this on proven industry practice (iterated pairwise) is a sound 
choice?

4.  Would SG14 support forwarding this to LEWG for further semantic review?

Thank you. Discussion welcome.
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