
Canonical Parallel
Reduction

A Fixed Expression Structure for Run-to-Run Consistency

Andrew Drakeford
SG14 — Low Latency, Gaming, Embedded, Financial Trading
February 2026

We Want Deterministic
Reduction

Parallel reduction that gives the same answer every time. Not accumulate.

The Gap in the Standard

std::accumulate
Sequential left-to-right fold

Specified sequence ✓
Reproducible ✓
Parallel ✗

THE GAP
No standard facility combines
parallel execution with a
specified expression.

Specified sequence ✓
Reproducible ✓
Parallel ✓

This is what we propose.

std::reduce
Unspecified grouping

Specified sequence ✗
Reproducible ✗
Parallel ✓

Different results for non-
associative operations

Same code, same data — potentially different result. That's the gap.

Why SG14 Domains Can't Live
With This

Finance
Audit reproducibility requires
deterministic replay of analytics.
Audit trails require
reproducibility.
Regression testing against a gold
result is impossible.

Gaming
Deterministic lockstep
networking breaks without
bitwise reproducibility. Replay
systems require
identical results across clients.

Safety-Critical
DO-178C and IEC 61508 require
deterministic
computation for certification.
Non-reproducible
parallel code is a blocker.

Everyone here has either hit this problem or worked around it with a hand-rolled solution.

Two Approaches —
Complementary, Not Competing

A: Binned Summation
Attack the accuracy — make the answer so precise
that grouping doesn't matter.

Libraries (ReproBLAS, ExBLAS, Kulisch) use extra-
precision arithmetic to make
summation order-independent. Limited to operations
with known error structure.

B: Fixed Evaluation Topology ←
This Talk
Fix the shape of the reduction tree. The sequence of
operations is then determined.
Same rounding error every time.

Works for ANY binary_op — not just addition.
General-purpose foundation.

They compose

A binned accumulator as binary_op inside a fixed
topology gives you both accuracy and
reproducibility.

The topology is the general-purpose foundation.

This proposal fixes topology, not numerical error. For error bounds, see Higham §4.6.

The Core Requirement

The topology must depend only on N and a user
parameter L. Nothing else.

Not on thread count Not on SIMD width Not on platform
Not on execution
strategy

Same N, same L → same shape → same sequence → same result.

The expression shape is fixed; execution scheduling remains free.

Given the same floating-point evaluation model (rounding mode, contraction, precision). See §6 of the paper.

Three Benefits of a Fixed Topology

1. Reproducibility
Fix the tree → fix the sequence
→ fix the result.

Same L, same N → same result,
every time,
any thread count, any SIMD
width.

Cross-platform identity
additionally requires
a matching FP evaluation model.

2. Relaxed
Constraints
std::reduce requires
commutativity and associativity.

A fixed topology specifies every
operand position.
No reassociation → no
associativity.
No reordering → no
commutativity.

3. No Identity
Element
A canonical tree does not require
an algebraic
identity element.

A fixed topology uses absent-
operand propagation
for non-power-of-2 lengths.
Property of the tree,
not the operator.

One decision — agree on the tree — delivers all three.

Starting Point: Recursive Bisection

⊕

⊕ ⊕

⊕ ⊕ ⊕ ⊕

0 1 2 3 4 5 6 7

depth 0

depth 1

depth 2

depth 3

← Very branchy here:
4 + 8 function calls
for just 8 elements

Problem: recursive calls dominate
Every ⊕ node is a function call with a branch. N−1
interior nodes
for N leaves. At the bottom levels the work per node
is tiny but the overhead is not.

Good: O(log n · ε) accuracy
Balanced tree gives optimal error bounds.
Natural parallelism from independent subtrees.

Can we get the same balanced tree shape with a faster evaluation
strategy?

Why a Tree?

Scalability
Independent subtrees execute concurrently. O(log N)
depth enables efficient parallel decomposition across
threads and SIMD lanes.

Accuracy
Balanced tree: O(log n · ε) error bounds.
Left-to-right fold (accumulate): O(n · ε).
Strictly better — you gain accuracy for free.

What L gives you
L selects the lane count (the primary topology coordinate). If you pick L=16 but deploy on AVX-512,
you still get full reproducibility — the canonical tree is unchanged. You may leave some hardware
utilisation on the table, but correctness is never at risk.

Choose L for your reproducibility domain, not your deployment target.

From Naive to Proven

Naive: Binary Decomposition
N = 47 = 101111₂
→ Trees of size: 32 + 8 + 4 + 2 + 1

Fast, branchless, cache-friendly. Each sub-tree is a
known complete size.

But: final combination merges results of very
different
magnitudes — a 32-element partial sum next to a
single
element degrades numerical error bounds.

Proven: Iterated Pairwise (Shift-
Carry)
Process input in blocks of L lanes.

Within each block: L independent lanes accumulate
vertically — branchless, straight-line, maps directly to
SIMD.

Shift-carry maintains balanced partial results across
blocks. O(log n · ε) error — mathematically proven.

→

We propose to canonicalise the proven approach — not inventing,
standardising.

The Canonical Tree (k = 7)

op

op op

op op op e₆

e₀ e₁ e₂ e₃ e₄ e₅

k = 7

((e₀ + e₁) + (e₂ + e₃)) + ((e₄ +
e₅) + e₆)

Parenthesized expression (fully determined by k):

Worked rounds

Round 1: pair [e₀,e₁], [e₂,e₃], [e₄,e₅], carry e₆
→ 4 results

Round 2: pair [op(e₀,e₁), op(e₂,e₃)], [op(e₄,e₅), e₆]
→ 2 results

Round 3: final combine → 1 result

Tree shape is fully determined by k alone — no runtime decisions.

Shift-Reduce: How It Executes
Remaining Sequence Stack Operation

x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ ∅ shift x₁

x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₁ shift x₂

x₃ x₄ x₅ x₆ x₇ x₈ x₁ x₂ reduce a₁ = x₁ + x₂

x₃ x₄ x₅ x₆ x₇ x₈ a₁ shift x₃

x₄ x₅ x₆ x₇ x₈ a₁ x₃ shift x₄

x₅ x₆ x₇ x₈ a₁ x₃ x₄ reduce a₂ = x₃ + x₄

x₅ x₆ x₇ x₈ a₁ a₂ reduce b₁ = a₁ + a₂

x₅ x₆ x₇ x₈ b₁ shift x₅

x₆ x₇ x₈ b₁ x₅ shift x₆

x₇ x₈ b₁ x₅ x₆ reduce a₃ = x₅ + x₆

x₇ x₈ b₁ a₃ shift x₇

x₈ b₁ a₃ x₇ shift x₈

∅ b₁ a₃ x₇ x₈ reduce a₄ = x₇ + x₈

∅ b₁ a₃ a₄ reduce b₂ = a₃ + a₄

∅ b₁ b₂ reduce c₁ = b₁ + b₂

∅ c₁ done!

The pattern: after n shifts, ntz(n) reductions occur. Shift-shift-reduce, shift-shift-reduce-reduce, … No branches — purely mechanical.

Dalton, Wang & Blainey (IBM, 2014) — "SIMDizing Pairwise Sums"

This is one efficient evaluation strategy. The Standard specifies the expression tree, not the evaluation schedule.

Iterated Pairwise — The Proposed
Canonical Form

Known. Proven. Industry practice. Not inventing anything.

How It Works
Process input in blocks of L lanes.

Within each block: L independent lanes accumulate
vertically — branchless, maps to SIMD.

Shift-carry maintains balanced partial results across
blocks.

What It Gives You
Provably SIMD-efficient: inner loop is pure vertical
accumulation.

O(log n · ε) error bounds — same as recursive
pairwise.

Topology depends only on N and L. Same tree on
AVX2,
NEON, SVE, or scalar.

Higham, Accuracy and Stability of Numerical Algorithms, §4.6. Dalton, Wang & Blainey (IBM, 2014).

This is the tree we propose to canonicalise.

Threading Scales Naturally

Fill Phase (Parallel)
Partition input into power-of-2 blocks aligned to L.
Each thread fills its blocks independently.

Embarrassingly parallel — no sharing, no races.
Power-of-2 boundaries align with tree level
boundaries
— merge is trivial.

Replay Phase (Canonical)
Merge follows the same canonical tree. Topology
unchanged
regardless of how many threads filled the blocks.

No awkward remainders at merge points.
No special-case logic for different-sized chunks.

1 thread or 128 threads — the canonical tree is the same.

Threads affect who computes what, not what is computed.

What It Looks Like

// Illustrative — name and signature not yet proposed

// Lane-based topology (portable across ABIs for a fixed L)

auto r1 = canonical_reduce_lanes<16>(first, last, init, op);

// Span-based shorthand (convenience: L = M / sizeof(V))

auto r2 = canonical_reduce<128>(first, last, init, op); // M=128 bytes

// Golden reference (L=1, single canonical tree, no lane interleaving)

auto gold = canonical_reduce<sizeof(double)>(first, last, init, op);

Same semantics as std::reduce
Same iterator requirements. Same binary_op. Adds a
topology parameter that fixes the expression.

This is stable_sort vs sort
You choose whether you need the guarantee. No
overhead if you don't use it.

x86 (AVX2) — Godbolt

NARROW (L=16): 0x40618f71f6379380
WIDE (L=128): 0x40618f71f6379397

Variant Throughput vs accumulate

std::accumulate 5.4 GB/s baseline

std::reduce 21.4 GB/s +297%

Deterministic ST (L=16, 8-block) 26.5 GB/s +391%

Deterministic MT (L=16, T=2) 21.2 GB/s +293%

With tuned SIMD implementation, deterministic reduction can
match or exceed std::reduce.

Flags: -O3 -std=c++20 -ffp-contract=off -fno-fast-math | Click Run on Godbolt — committee members can verify
godbolt.org/z/jbYqf1Eez

godbolt.org/z/jbYqf1Eez

Identical results assume matching FP evaluation model (contraction disabled, same rounding mode).

ARM (NEON) — Godbolt

NARROW (L=16): 0x40618f71f6379380
WIDE (L=128): 0x40618f71f6379397

Cross-Platform Identity
Identical hex output on a completely different ISA — same tree, same result.

Build-proof macros: __aarch64__, __ARM_NEON, __ARM_NEON_FP

-O3 -std=c++20 -march=armv8-a -ffp-contract=off -fno-fast-math

Same canonical tree on a different ISA → identical golden hex.

CE timing is illustrative only (VM load varies).
godbolt.org/z/v369Mbnvh

godbolt.org/z/v369Mbnvh

Identical results assume matching FP evaluation model (contraction disabled, same rounding mode).

CUDA — Godbolt

L=16: 0x40618f71f6379380
L=128: 0x40618f71f6379397

Canonical Topology on GPU
Evaluates the same canonical expression (§4).
Both L=16 and L=128 configs demonstrated.

Zero overhead vs CUB — parity with NVIDIA's
optimised reduction.

Golden Result Workflow
Produce golden hex on GPU, verify on CPU.
CPU golden matches GPU golden —
heterogeneous verification.

Same tree, different hardware, identical bits.

Zero overhead vs CUB; heterogeneous golden-result verification.

CUDA/NVCC; canonical vs CUB; includes L=16 and L=128
godbolt.org/z/x58GzE73q

godbolt.org/z/x58GzE73q

Identical results assume matching FP evaluation model (contraction disabled, same rounding mode).

What This Proposal Does NOT
Guarantee

✗ Does not guarantee cross-architecture IEEE identity.
Different ISAs may evaluate differently unless the FP model also matches.

✗ Does not constrain the floating-point evaluation model.
Contraction, rounding mode, and precision remain implementation choices.

✗ Does not replace std::reduce.
std::reduce remains the right choice when determinism is not required.

✗ Does not impose runtime overhead unless chosen.
Opt-in only — existing code paths are unaffected.

Understanding the boundaries of a proposal is as important as understanding its benefits.

Why Standardise?

Kokkos TBB CUB oneMKL

Different, implementation-specific topologies. No portable semantic contract.

Portable
Reproducibility across
implementations.
Same canonical tree everywhere.

Composable
Works with execution policies
and
ranges. Generic components can
demand
specified reduction.

Certifiable
A standard specification is a
certification
target for regulated industries.

This is stable_sort vs sort. You choose whether you need the
guarantee.

Feedback We're Seeking
Semantics first. API next.

1. Do you agree that deterministic parallel reduction is needed — that there's a gap?

2. Do you agree that a fixed topology (N and L only, not thread count or SIMD width) is the
right approach?

3. Do you agree that basing this on proven industry practice (iterated pairwise) is a sound
choice?

4. Would SG14 support forwarding this to LEWG for further semantic review?

Thank you. Discussion welcome.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

