Canonical Parallel
Reduction

A Fixed Expression Structure for Run-to-Run Consistency

Andrew Drakeford

SG14 — Low Latency, Gaming, Embedded, Financial Trading
February 2026

We Want Deterministic
Reduction

Parallel reduction that gives the same answer every time. Not accumulate.

The Gap in the Standard

std::reduce
Unspecified grouping

std::accumulate
Sequential left-to-right fold

THE GAP

No standard facility combines
parallel execution with a

Specified sequence v/ specified expression.
Reproducible v/

Parallel X

Specified sequence X
Reproducible X
Parallel v

Reproducible v/
Parallel v Different results for non-

associative operations

This is what we propose.

|
|
|
|
|
|
|
| Specified sequence v/
|
|
|
|
|
|

Same code, same data — potentially different result. That's the gap.

Why SG14 Domains Can't Live

With This

Finance

Audit reproducibility requires
deterministic replay of analytics.
Audit trails require
reproducibility.

Regression testing against a gold
result is impossible.

Everyone here has either hit this problem or worked around it with a hand-rolled solution.

Gaming

Deterministic lockstep
networking breaks without
bitwise reproducibility. Replay
systems require

identical results across clients.

Safety-Critical
DO-178C and IEC 61508 require
deterministic

computation for certification.
Non-reproducible

parallel code is a blocker.

Two Approaches —

Complementary, Not Competing

A: Binned Summation They compose
Attack the accuracy — make the answer so precise

that grouping doesn't matter. A binned accumulator as binary_op inside a fixed

topology gives you both accuracy and

Libraries (ReproBLAS, ExBLAS, Kulisch) use extra- reproducibility.
precision arithmetic to make

summation order-independent. Limited to operations . .
R SWT S o ShrUcToTe The topology is the general-purpose foundation.

B: Fixed Evaluation Topology «
This Talk

Fix the shape of the reduction tree. The sequence of
operations is then determined.
Same rounding error every time.

Works for ANY binary _op — not just addition.

General-purpose foundation.
This proposal fixes topology, not numerical error. For error bounds, see Higham §4.6.

The Core Requirement

The topology must depend only on N and a user
parameter L. Nothing else.

| Not on execution

| Not on thread count | Not on SIMD width | Not on platform
strategy

Same N, same . —» same shape — same sequence — same result.

The expression shape is fixed; execution scheduling remains free.

Given the same floating-point evaluation model (rounding mode, contraction, precision). See §6 of the paper.

Three Benefits of a Fixed Topology

1. Reproducibility

Fix the tree - fix the sequence
- fix the result.

Same L, same N - same result,
every time,

any thread count, any SIMD
width.

Cross-platform identity
additionally requires

a matching FP evaluation model.

2. Relaxed

Constraints
std::reduce requires
commutativity and associativity.

A fixed topology specifies every
operand position.

No reassociation = no
associativity.

No reordering = no
commutativity.

3. No Identity

Element

A canonical tree does not require
an algebraic

identity element.

A fixed topology uses absent-
operand propagation

for non-power-of-2 lengths.
Property of the tree,

not the operator.

One decision — agree on the tree — delivers all three.

Topological determinism — expression is fixed for given (N, L), independent of

implementation/hardware/scheduling

Layout invariance — results independent of memory alignment and physical
placement

Execution independence — subtrees may be evaluated in any order/concurrently

Cross-invocation reproducibility — stable returned value across runs for same inputs
and topology

Scope of guarantee — applies to returned value only (not side-effect ordering)

Starting Point: Recursive Bisection

6 depth 0
@ e depth 1

€& Very branchy here:
4 + 8 function calls
depth2 for just 8 elements

depth 3
Problem: recursive calls dominate Good: O(log n - €) accuracy
Every @ node is a function call with a branch. N-1 Balanced tree gives optimal error bounds.

interior nodes

Natural parallelism from independent subtrees.
for N leaves. At the bottom levels the work per node

Can we get the same balanced tree shape with a faster evaluation

Why a Tree?

Scalability Accuracy

Independent subtrees execute concurrently. O(log N) Balanced tree: O(log n - €) error bounds.
depth enables efficient parallel decomposition across Left-to-right fold (accumulate): O(n - €).
threads and SIMD lanes. Strictly better — you gain accuracy for free.
What L gives you

L selects the lane count (the primary topology coordinate). If you pick L=16 but deploy on AVX-512,
you still get full reproducibility — the canonical tree is unchanged. You may leave some hardware
utilisation on the table, but correctness is never at risk.

Choose L for your reproducibility domain, not your deployment target.

From Naive to Proven

Naive: Binary Decomposition
N =47 = 101111,
- Treesof size:32+8+4+2+1

Fast, branchless, cache-friendly. Each sub-tree is a
known complete size.

But: final combination merges results of very
different
magnitudes — a 32-element partial sum next to a
single
element degrades numerical error bounds.

We propose to canonicalise the proven approach — not inventing,

9

Proven: Iterated Pairwise (Shift-
Carry)

Process input in blocks of L lanes.

Within each block: L independent lanes accumulate
vertically — branchless, straight-line, maps directly to
SIMD.

Shift-carry maintains balanced partial results across
blocks. O(log n - €) error — mathematically proven.

standardising.

The Canonical Tree (k = 7)

Parenthesized expression (fully determined by k):

((eO + e1) + (ez + e3)) + ((e4 +

€s) + €g)

° e Worked rounds
Round 1: pair [eo,e1], [e2,€3], [€a,€5], carry e
° ° e e - 4 results

Round 2: pair [op(eo,e1), op(ez,es)], [op(eas,es), e6]

° ° e e ° e T

Round 3: final combine = 1 result
k=7

Tree shape is fully determined by k alone — no runtime decisions.

Shift-Reduce: How It Executes

X1 X2 X3 Xa Xs Xe X7 Xsg [0] shift xa

X2 X3 Xa X5 Xe X7 Xs X1 shift x,

X3 Xa Xs Xe X7 Xg X1 X2 reduce ai: = X1 + X2
X3 Xa Xs Xe X7 Xs ai shift xs

Xa Xs Xe X7 Xsg a1 X3 shift xa

Xs Xe X7 Xg a1 X3 Xa reduce a; = Xz + Xz
Xs Xe X7 Xsg a; a2 reduce b, = ai: + a2
X5 Xe X7 Xg bi shift xs

Xe X7 Xg bs Xs shift Xe

X7 Xg bi Xs Xe reduce asz = Xs + Xg
X7 Xsg b, as shift x»

Xsg b:s asz x5y shift xs

[0] b: as X7 Xs reduce as; = X; + Xs
[0] b: as aa reduce b, = az + a,
(0] bs b reduce c; = by + b,
(4] [done!

The pattern: after n shifts, ntz(n) reductions occur. Shift-shift-reduce, shift-shift-reduce-reduce, ... No branches — purely mechanical.
Dalton, Wang & Blainey (IBM, 2014) — "SIMDizing Pairwise Sums"

This is one efficient evaluation strategy. The Standard specifies the expression tree, not the evaluation schedule.

Iterated Pairwise — The Proposed

Canonical Form

Known. Proven. Industry practice. Not inventing anything.

How It Works What It Gives You
Process input in blocks of L lanes. Provably SIMD-efficient: inner loop is pure vertical
accumulation.

Within each block: L independent lanes accumulate

vertically — branchless, maps to SIMD. O(log n - €) error bounds — same as recursive
pairwise.

Shift-carry maintains balanced partial results across

blocks. Topology depends only on N and L. Same tree on
AVX2,

NEON, SVE, or scalar.

Higham, Accuracy and Stability of Numerical Algorithms, §4.6. Dalton, Wang & Blainey (IBM, 2014).

This is the tree we propose to canonicalise.

Threading Scales Naturally

Fill Phase (Parallel) Replay Phase (Canonical)
Partition input into power-of-2 blocks aligned to L. Merge follows the same canonical tree. Topology
Each thread fills its blocks independently. unchanged

regardless of how many threads filled the blocks.
Embarrassingly parallel — no sharing, no races.
Power-of-2 boundaries align with tree level No awkward remainders at merge points.

boundaries No special-case logic for different-sized chunks.
— merge is trivial.

1 thread or 128 threads — the canonical tree is the same.

Threads affect who computes what, not what is computed.

What It Looks Like

// Illustrative — name and signature not yet proposed

// Lane-based topology (portable across ABIs for a fixed L)
auto rl = canonical reduce_lanes<16>(first, last, init, op);

// Span-based shorthand (convenience: L = M / sizeof(V))
auto r2 = canonical_reduce<128>(first, last, init, op); // M=128 bytes

// Golden reference (L=1, single canonical tree, no lane interleaving)
auto gold = canonical reduce<sizeof(double)>(first, last, init, op);

Same semantics as std::reduce This is stable_sort vs sort
Same iterator requirements. Same binary op. Adds a You choose whether you need the guarantee. No
topology parameter that fixes the expression. overhead if you don't use it.

x86 (AVX2) — Godbolt

NARROW (L=16): 0x40618f71f6379380
WIDE (L=128): 0x40618f71f6379397

std::accumulate 5.4 GB/s baseline
std::reduce 21.4 GB/s +297%
Deterministic ST (L=16, 8-block) 26.5 GB/s +391%
Deterministic MT (L=16, T=2) 21.2 GB/s +293%

With tuned SIMD implementation, deterministic reduction can

match or exceed std::reduce.

Flags: -03 -std=c++20 -ffp-contract=off -fno-fast-math Click Run on Godbolt — committee members can verify

godbolt.org/z/jbYqflEez

PERFORMANCE (CE timings vary; best-of-trials):

std::accumulate 1.489 ms 5.37 GB/s
std::reduce (no policy) 0.371 ms 21.56 GB/s
std: :reduce (seq) 0.380 ms 21.07 GB/s
std::reduce (unseq) 1.496 ms 5.35 GB/s
std: :reduce (par) 0.379 ms 21.12 GB/s
std: :reduce (par unseq) 1.493 ms 5.36 GB/s
deterministic reduce NARROW (M=128) 0.313 ms 25.54 GB/s
deterministic_reduce WIDE (M=1024) 0.354 ms 22.62 GB/s

Overhead vs std::accumulate:
NAREOW: -7%.0%
WIDE: -76.2%

VERIFICATION BLOCK

Platform: xz86-64

Selected: AVXZ2

SEED: 0x2243f6a38885a308d3

N: 1000000

NARROW: 0x40618f71f6379380 (M=128, L=16)
WIDE: 0xx40618£71£6379397 (M=1024, L=128)

ARM (NEON) — Godbolt

0x40618f71f6379380
0x4061817116379397

Cross-Platform Identity

Identical hex output on a completely different ISA — same tree, same result.

Build-proof macros: __aarch64__, __ ARM_NEON, __ ARM_NEON_FP

-03 -std=c++20 -march=armv8-a -ffp-contract=off -fno-fast-math

Same canonical tree on a different ISA — identical golden hex.

CE timing is illustrative only (VM load varies).

godbolt.org/z/v369Mbnvh

std:
std:
std:
std:
std:
std:

raccumulate

:reduce (no policy)
:reduce (5eq)
:reduce (unseq)
:reduce (par)
(

:reduce (par_unsedq)

deterministic reduce NARROW (M=128)

deterministic reduce WIDE

(M=1024)

Overhead vs std::accumulate:
NARROW: -64.9%

WIDE:

-56.0%

o O O O O O O O

.776
.340
. 340
.775
.340
779
.272
.341

ms

ms

ms

ms

ms

ms

ms

ms

10.
23.
23 =
10.
23.
10.
25)c
23.

32
55
50
32
56
27

=]
o

43

VERIFICATION BLOCK

Platform: ARM&4
Selected: NEON

SEED:
N:
NARROW:
WIDE:

0x243f6a8885a308d3

1000000

0x40618f71f63759380 (M=128,
0x40618f71f6379397 (M=1024,

L=16)
L=128)

GB/s
GB/s3
GB/5
GB/s
GB/s
GB/5
GB/S
GB/s

CUDA — Godbolt

0x40618f71f6379380
0x40618f7116379397

Canonical Topology on GPU Golden Result Workflow
Evaluates the same canonical expression (§4). Produce golden hex on GPU, verify on CPU.
Both L=16 and L=128 configs demonstrated. CPU golden matches GPU golden —

heterogeneous verification.

Zero overhead vs CUB — parity with NVIDIA's
optimised reduction. Same tree, different hardware, identical bits.

Zero overhead vs CUB; heterogeneous golden-result verification.

CUDA/NVCC; canonical vs CUB; includes L=16 and L=128

godbolt.org/z/x58GzE73q

Identical results assume matching FP evaluation model (contraction disabled, same rounding mode).

— PERFORMANCE (N=1e6)

CUB DeviceReduce: :Sum
Fast atomic reduce

Canonical FAST (L=16)
Canonical FAST (L=128)

= PERFORMANCE vs CUB

0.056
0.052
0.548
0.067

ms

ms

ms

ms

143.
153.

14,
118.

36 GB/s
04 GB/s
&l GB/s
84 GB/s

Canonical FAST (L=16): 9.81x slower
Canonical FAST (L=128): 1.21x slower

of CUB throughput)
(82.9% of CUB throughput)

VERIFICATION BLOCK

Platform: CUDA (Tesla T4)
SEED: 0x243f62a8885a3084d3
N: 1000000

HOST N: 0x40618f71f6379380
GPU N: 0x40618f71f6379380
HOST W: 0x40618f71£f6379397
GPU W: 0x40618£71£6379397
SWEEP: PASS V

L=16)
L=16)
L=128)
1=128)

— e

What This Proposal Does NOT

Guarantee

X Does not guarantee cross-architecture IEEE identity.
Different ISAs may evaluate differently unless the FP model also matches.

X Does not constrain the floating-point evaluation model.
Contraction, rounding mode, and precision remain implementation choices.

X Does not replace std::reduce.
std::reduce remains the right choice when determinism is not required.

X Does not impose runtime overhead unless chosen.
Opt-in only — existing code paths are unaffected.

Understanding the boundaries of a proposal is as important as understanding its benefits.

Why Standardise?

Different, implementation-specific topologies. No portable semantic contract.

Portable Composable Certifiable

Reproducibility across Works with execution policies A standard specification is a

implementations. and certification

Same canonical tree everywhere. ranges. Generic components can target for regulated industries.
demand

specified reduction.

This is stable_sort vs sort. You choose whether you need the

guarantee.

Feedback We're Seeking

Semantics first. API next.

1. Do you agree that deterministic parallel reduction is needed — that there's a gap?

2. Do you agree that a fixed topology (N and L only, not thread count or SIMD width) is the
right approach?

3. Do you agree that basing this on proven industry practice (iterated pairwise) is a sound
choice?

4. Would SG14 support forwarding this to LEWG for further semantic review?

Thank you. Discussion welcome.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

