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We Want Deterministic
Reduction

Parallel reduction that gives the same answer every time. Not accumulate.



The Gap in the Standard

std::reduce
Unspecified grouping

std::accumulate
Sequential left-to-right fold

THE GAP

No standard facility combines
parallel execution with a

Specified sequence v/ specified expression.
Reproducible v/
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Reproducible X
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Reproducible v/
Parallel v Different results for non-
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This is what we propose.

|
|
|
|
|
|
|
| Specified sequence v/
|
|
|
|
|
|

Same code, same data — potentially different result. That's the gap.



Why SG14 Domains Can't Live

With This

Finance

Audit reproducibility requires
deterministic replay of analytics.
Audit trails require
reproducibility.

Regression testing against a gold
result is impossible.

Everyone here has either hit this problem or worked around it with a hand-rolled solution.

Gaming

Deterministic lockstep
networking breaks without
bitwise reproducibility. Replay
systems require

identical results across clients.

Safety-Critical
DO-178C and IEC 61508 require
deterministic

computation for certification.
Non-reproducible

parallel code is a blocker.



Two Approaches —

Complementary, Not Competing

A: Binned Summation They compose
Attack the accuracy — make the answer so precise

that grouping doesn't matter. A binned accumulator as binary_op inside a fixed

topology gives you both accuracy and

Libraries (ReproBLAS, ExBLAS, Kulisch) use extra- reproducibility.
precision arithmetic to make

summation order-independent. Limited to operations . .
R SWT S o ShrUcToTe The topology is the general-purpose foundation.

B: Fixed Evaluation Topology «
This Talk

Fix the shape of the reduction tree. The sequence of
operations is then determined.
Same rounding error every time.

Works for ANY binary _op — not just addition.

General-purpose foundation.
This proposal fixes topology, not numerical error. For error bounds, see Higham §4.6.



The Core Requirement

The topology must depend only on N and a user
parameter L. Nothing else.

| Not on execution

| Not on thread count | Not on SIMD width | Not on platform
strategy

Same N, same . —» same shape — same sequence — same result.

The expression shape is fixed; execution scheduling remains free.

Given the same floating-point evaluation model (rounding mode, contraction, precision). See §6 of the paper.




Three Benefits of a Fixed Topology

1. Reproducibility

Fix the tree - fix the sequence
- fix the result.

Same L, same N - same result,
every time,

any thread count, any SIMD
width.

Cross-platform identity
additionally requires

a matching FP evaluation model.

2. Relaxed

Constraints
std::reduce requires
commutativity and associativity.

A fixed topology specifies every
operand position.

No reassociation = no
associativity.

No reordering = no
commutativity.

3. No Identity

Element

A canonical tree does not require
an algebraic

identity element.

A fixed topology uses absent-
operand propagation

for non-power-of-2 lengths.
Property of the tree,

not the operator.

One decision — agree on the tree — delivers all three.




Topological determinism — expression is fixed for given (N, L), independent of

implementation/hardware/scheduling

Layout invariance — results independent of memory alignment and physical
placement

Execution independence — subtrees may be evaluated in any order/concurrently

Cross-invocation reproducibility — stable returned value across runs for same inputs
and topology

Scope of guarantee — applies to returned value only (not side-effect ordering)



Starting Point: Recursive Bisection

6 depth 0
@ e depth 1

€& Very branchy here:
4 + 8 function calls
depth2  for just 8 elements

depth 3
Problem: recursive calls dominate Good: O(log n - €) accuracy
Every @ node is a function call with a branch. N-1 Balanced tree gives optimal error bounds.

interior nodes

Natural parallelism from independent subtrees.
for N leaves. At the bottom levels the work per node

Can we get the same balanced tree shape with a faster evaluation




Why a Tree?

Scalability Accuracy

Independent subtrees execute concurrently. O(log N) Balanced tree: O(log n - €) error bounds.
depth enables efficient parallel decomposition across Left-to-right fold (accumulate): O(n - €).
threads and SIMD lanes. Strictly better — you gain accuracy for free.
What L gives you

L selects the lane count (the primary topology coordinate). If you pick L=16 but deploy on AVX-512,
you still get full reproducibility — the canonical tree is unchanged. You may leave some hardware
utilisation on the table, but correctness is never at risk.

Choose L for your reproducibility domain, not your deployment target.



From Naive to Proven

Naive: Binary Decomposition
N =47 = 101111,
- Treesof size:32+8+4+2+1

Fast, branchless, cache-friendly. Each sub-tree is a
known complete size.

But: final combination merges results of very
different
magnitudes — a 32-element partial sum next to a
single
element degrades numerical error bounds.

We propose to canonicalise the proven approach — not inventing,

9

Proven: Iterated Pairwise (Shift-
Carry)

Process input in blocks of L lanes.

Within each block: L independent lanes accumulate
vertically — branchless, straight-line, maps directly to
SIMD.

Shift-carry maintains balanced partial results across
blocks. O(log n - €) error — mathematically proven.

standardising.




The Canonical Tree (k = 7)

Parenthesized expression (fully determined by k):

((eO + e1) + (ez + e3)) + ((e4 +

€s) + €g)

° e Worked rounds
Round 1: pair [eo,e1], [e2,€3], [€a,€5], carry e
° ° e e - 4 results

Round 2: pair [op(eo,e1), op(ez,es)], [op(eas,es), e6]

° ° e e ° e T

Round 3: final combine = 1 result
k=7

Tree shape is fully determined by k alone — no runtime decisions.




Shift-Reduce: How It Executes

X1 X2 X3 Xa Xs Xe X7 Xsg [0] shift xa

X2 X3 Xa X5 Xe X7 Xs X1 shift x,

X3 Xa Xs Xe X7 Xg X1 X2 reduce ai: = X1 + X2
X3 Xa Xs Xe X7 Xs ai shift xs

Xa Xs Xe X7 Xsg a1 X3 shift xa

Xs Xe X7 Xg a1 X3 Xa reduce a; = Xz + Xz
Xs Xe X7 Xsg a; a2 reduce b, = ai: + a2
X5 Xe X7 Xg bi shift xs

Xe X7 Xg bs Xs shift Xe

X7 Xg bi Xs Xe reduce asz = Xs + Xg
X7 Xsg b, as shift x»

Xsg b:s asz x5y shift xs

[0] b: as X7 Xs reduce as; = X; + Xs
[0] b: as aa reduce b, = az + a,
(0] bs b reduce c; = by + b,
(4] [ done!

The pattern: after n shifts, ntz(n) reductions occur. Shift-shift-reduce, shift-shift-reduce-reduce, ... No branches — purely mechanical.
Dalton, Wang & Blainey (IBM, 2014) — "SIMDizing Pairwise Sums"

This is one efficient evaluation strategy. The Standard specifies the expression tree, not the evaluation schedule.



Iterated Pairwise — The Proposed

Canonical Form

Known. Proven. Industry practice. Not inventing anything.

How It Works What It Gives You
Process input in blocks of L lanes. Provably SIMD-efficient: inner loop is pure vertical
accumulation.

Within each block: L independent lanes accumulate

vertically — branchless, maps to SIMD. O(log n - €) error bounds — same as recursive
pairwise.

Shift-carry maintains balanced partial results across

blocks. Topology depends only on N and L. Same tree on
AVX2,

NEON, SVE, or scalar.

Higham, Accuracy and Stability of Numerical Algorithms, §4.6. Dalton, Wang & Blainey (IBM, 2014).

This is the tree we propose to canonicalise.




Threading Scales Naturally

Fill Phase (Parallel) Replay Phase (Canonical)
Partition input into power-of-2 blocks aligned to L. Merge follows the same canonical tree. Topology
Each thread fills its blocks independently. unchanged

regardless of how many threads filled the blocks.
Embarrassingly parallel — no sharing, no races.
Power-of-2 boundaries align with tree level No awkward remainders at merge points.

boundaries No special-case logic for different-sized chunks.
— merge is trivial.

1 thread or 128 threads — the canonical tree is the same.

Threads affect who computes what, not what is computed.



What It Looks Like

// Illustrative — name and signature not yet proposed

// Lane-based topology (portable across ABIs for a fixed L)
auto rl = canonical reduce_lanes<16>(first, last, init, op);

// Span-based shorthand (convenience: L = M / sizeof(V))
auto r2 = canonical_reduce<128>(first, last, init, op); // M=128 bytes

// Golden reference (L=1, single canonical tree, no lane interleaving)
auto gold = canonical reduce<sizeof(double)>(first, last, init, op);

Same semantics as std::reduce This is stable_sort vs sort
Same iterator requirements. Same binary op. Adds a You choose whether you need the guarantee. No
topology parameter that fixes the expression. overhead if you don't use it.




x86 (AVX2) — Godbolt

NARROW (L=16): 0x40618f71f6379380
WIDE (L=128): 0x40618f71f6379397

std::accumulate 5.4 GB/s baseline
std::reduce 21.4 GB/s +297%
Deterministic ST (L=16, 8-block) 26.5 GB/s +391%
Deterministic MT (L=16, T=2) 21.2 GB/s +293%

With tuned SIMD implementation, deterministic reduction can

match or exceed std::reduce.

Flags: -03 -std=c++20 -ffp-contract=off -fno-fast-math Click Run on Godbolt — committee members can verify

godbolt.org/z/jbYqflEez




PERFORMANCE (CE timings vary; best-of-trials):

std::accumulate 1.489 ms 5.37 GB/s
std::reduce (no policy) 0.371 ms 21.56 GB/s
std: :reduce (seq) 0.380 ms 21.07 GB/s
std::reduce (unseq) 1.496 ms 5.35 GB/s
std: :reduce (par) 0.379 ms 21.12 GB/s
std: :reduce (par unseq) 1.493 ms 5.36 GB/s
deterministic reduce NARROW (M=128) 0.313 ms 25.54 GB/s
deterministic_reduce WIDE (M=1024) 0.354 ms 22.62 GB/s

Overhead vs std::accumulate:
NAREOW: -7%.0%
WIDE: -76.2%

VERIFICATION BLOCK

Platform: xz86-64

Selected: AVXZ2

SEED: 0x2243f6a38885a308d3

N: 1000000

NARROW: 0x40618f71f6379380 (M=128, L=16)
WIDE: 0xx40618£71£6379397 (M=1024, L=128)




ARM (NEON) — Godbolt

0x40618f71f6379380
0x4061817116379397

Cross-Platform Identity

Identical hex output on a completely different ISA — same tree, same result.

Build-proof macros: __aarch64__, __ ARM_NEON, __ ARM_NEON_FP

-03 -std=c++20 -march=armv8-a -ffp-contract=off -fno-fast-math

Same canonical tree on a different ISA — identical golden hex.

CE timing is illustrative only (VM load varies).

godbolt.org/z/v369Mbnvh




std:
std:
std:
std:
std:
std:

raccumulate

:reduce (no policy)
:reduce (5eq)
:reduce (unseq)
:reduce (par)
(

:reduce (par_unsedq)

deterministic reduce NARROW (M=128)

deterministic reduce WIDE

(M=1024)

Overhead vs std::accumulate:
NARROW: -64.9%

WIDE:

-56.0%
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VERIFICATION BLOCK

Platform: ARM&4
Selected: NEON

SEED:
N:
NARROW:
WIDE:

0x243f6a8885a308d3

1000000

0x40618f71f63759380 (M=128,
0x40618f71f6379397 (M=1024,

L=16)
L=128)

GB/s
GB/s3
GB/5
GB/s
GB/s
GB/5
GB/S
GB/s



CUDA — Godbolt

0x40618f71f6379380
0x40618f7116379397

Canonical Topology on GPU Golden Result Workflow
Evaluates the same canonical expression (§4). Produce golden hex on GPU, verify on CPU.
Both L=16 and L=128 configs demonstrated. CPU golden matches GPU golden —

heterogeneous verification.

Zero overhead vs CUB — parity with NVIDIA's
optimised reduction. Same tree, different hardware, identical bits.

Zero overhead vs CUB; heterogeneous golden-result verification.

CUDA/NVCC; canonical vs CUB; includes L=16 and L=128

godbolt.org/z/x58GzE73q

Identical results assume matching FP evaluation model (contraction disabled, same rounding mode).



— PERFORMANCE (N=1e6)

CUB DeviceReduce: :Sum
Fast atomic reduce

Canonical FAST (L=16)
Canonical FAST (L=128)

= PERFORMANCE vs CUB

0.056
0.052
0.548
0.067

ms

ms

ms

ms

143.
153.

14,
118.

36 GB/s
04 GB/s
&l GB/s
84 GB/s

Canonical FAST (L=16): 9.81x slower
Canonical FAST (L=128): 1.21x slower

of CUB throughput)
(82.9% of CUB throughput)

VERIFICATION BLOCK

Platform: CUDA (Tesla T4)
SEED: 0x243f62a8885a3084d3
N: 1000000

HOST N: 0x40618f71f6379380
GPU N: 0x40618f71f6379380
HOST W: 0x40618f71£f6379397
GPU W: 0x40618£71£6379397
SWEEP: PASS V

L=16)
L=16)
L=128)
1=128)

— e




What This Proposal Does NOT

Guarantee

X Does not guarantee cross-architecture IEEE identity.
Different ISAs may evaluate differently unless the FP model also matches.

X Does not constrain the floating-point evaluation model.
Contraction, rounding mode, and precision remain implementation choices.

X Does not replace std::reduce.
std::reduce remains the right choice when determinism is not required.

X Does not impose runtime overhead unless chosen.
Opt-in only — existing code paths are unaffected.

Understanding the boundaries of a proposal is as important as understanding its benefits.



Why Standardise?

Different, implementation-specific topologies. No portable semantic contract.

Portable Composable Certifiable

Reproducibility across Works with execution policies A standard specification is a

implementations. and certification

Same canonical tree everywhere. ranges. Generic components can target for regulated industries.
demand

specified reduction.

This is stable_sort vs sort. You choose whether you need the

guarantee.



Feedback We're Seeking

Semantics first. API next.

1. Do you agree that deterministic parallel reduction is needed — that there's a gap?

2. Do you agree that a fixed topology (N and L only, not thread count or SIMD width) is the
right approach?

3. Do you agree that basing this on proven industry practice (iterated pairwise) is a sound
choice?

4. Would SG14 support forwarding this to LEWG for further semantic review?

Thank you. Discussion welcome.
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