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Abstract

Implementing summation when accuracy and throughput need to
be balanced is a challenging endevour. We present experimental
results that provide a sense when to start worrying and the expense
of the various solutions that exist. We also present a new algorithm
based on pairwise summation that achieves 89% of the throughput
of the fastest summation algorithms when the data is not resident
in L1 cache while eclipsing the accuracy of signifigantly slower
compensated sums like Kahan summation and Kahan-Babuska that
are typically used when accuracy is important.
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1. Introduction

Finite-precision floating point summation is a very common un-
derlying operation for many statistical and mathematical compu-
tations. It is a foundational building block used in other kernels
which are in turn ubiquitous, such as variance, dot product and ma-
trix multiply computations. One important need in kernels requir-
ing summation is balancing the tradeoff between performance and
accuracy.

Naive summation, which simply adds each successive number
in sequence to an accumulator, produces optimal performance that
quickly saturates memory bandwidth on longer sequences. It is
well-understood by modern compilers and is able to utilize max-
imal instruction-level parallelism even on short loops.

At the other extreme of the tradeoff, arbitrary precision floating
point arithmetic affords the maximal accuracy that can be expressed
in a finite-precision binary number but is several times slower.
The GNU multi-precision arithmetic library [1] in an example of
a mature implementation which provides this.

Instead of arbitrary precision, the extra precision may be fixed
at some level higher than required of the original answer. Sum-
ming single-precision floats with a double-precision accumulator
or using compensated sums is an example of this technique. Essen-
tially the extra bits are maintained as satellite data after each term is
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summed and are remixed into the summation as course-corrections.
Using a higher precision accumulator or Kahan summation [3] is
an example where the correction is applied after each term. Kahan-
Babuska [4] summation, on the other hand applies the correction
once at the end of the summation. Compensated sums perform bet-
ter than arbitrary-precision arithmetic summation and capture most
of their accuracy.

Another form of summation which offers excellent accuracy
but typically poor performance is pairwise summation. In pairwise
summation, the summation is reassociated into a balanced binary
expression tree prior to evaluation. It provides the best general
error-bound to a summation which does not make use of compen-
sated summation [2], or additional assumptions such as sorted data.
In this paper we investigate optimization opportunities for pairwise
sums and propose a new algorithm for computing pairwise sums
with performance approaching that of naive summation and accu-
racy near to compensated sums.

2. Algorithm

In this section we examine pairwise summation in more detail and
explore opportunities for performance tuning with SIMD instruc-
tions. Pairwise summation provides a compromise of accuracy be-
tween naive summation and compensated sums such as Kahan and
Kahan-Babuska, however, it is frequently overlooked because it
typically has poorer performance than compensated sums.

Pairwise summation reassociates a summation into a balanced
binary expression tree. It has a well known error bound [2] which
increases logarithmically with the length of the sequence as op-
posed to linearly for naive summation or a constant error bound for
compensated sums.

Figure 1. Two balanced trees for
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possible expression

To maintain the error bound, it is not essential that the path-
length from the trees differs by at most 1; the path-length only



needs to be bounded by [logz m|. This gives some freedom in se-
lection of how to reassociate the terms. See figure 1 for an example
of two possible balanced expression trees for the same sequence;
the first typically created by recursive pairwise summation, the lat-
ter evaluated by our proposed iterative version.

2.1 Recursive Implementation

The simplest way to implement pairwise summation is to recur-
sively subdivide the sequence in half and add the pairwise sum-
mation of each subsequence; The pairwise summation of a single
element acts as a base case and is its own sum. This introduces at
least as many function calls as there are elements. The function call
overhead can not be eliminated and inhibits instruction-level paral-
lelism of useful work. Furthermore, subdivision, even if stopped
prematurely introduces misalignment which makes SIMDization
challenging.

double
if (n
else

pairwise_sum (doublex x, size_t n) {
1) return xx;
return pairwise_sum(x, n/2)

+ pairwise_sum(x+n/2, n—n/2);

Figure 2. Pairwise summation

A viable tradeoff between performance and accuracy is possible
by having a cut-off threshold where pairwise summation switches
to naive summation when the length of the sequence falls below a
threshold k. Common values of k that yield performance improve-
ments without large sacrifices in accuracy are 64 or 128. Because
this reduces the number of function calls to 1/k of the original pair-
wise summation, the performance benefits are large.

Additionally, if the division into subsequences is rounded to the
nearest alignment boundary, then the sum of k elements may be
performed with an optimized SIMD loop without any prologue or
epilogue.

is aligned to a SIMD boundary
is a multiple of the SIMD vector length
size_t n) {

// assume x
// assume n
double pairwise_sum?2 (doublex x,
if (n <= 64) {
// no prologue or epilogue necessary.
return naive_aligned_simd_sum (x,n);
} else {
// midpoint is aligned to a SIMD boundary.
size_t mid = (n/2) & “0x03ul;
return pairwise_sum2(x, mid)
+ pairwise_sum?2 (x+mid, n—mid);

Figure 3. SIMDized pairwise summation with threshold

2.2 Iterative Implementation

We propose a bottom-up algorithm to compute pairwise sums. It
has the following advantages over top-down pairwise sums:

e It is iterative, rather than recursive, hence avoids function call
overhead and opens opportunities for instruction-level paral-
lelism and loop-optimization techniques.

e It can be readily optimized with SIMD instructions without
increasing the error bound.

e [t is easier to unroll without paying the penalty for a branch.
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We present performance and accuracy measurements of the
shift-reduce summation algorithm in comparison with a compen-
sated summation algorithm and the naive loop-based summation
algorithm in the experimental section.

The inspiration for this technique is heavily influenced by the
transition from creating top-down recursive descent parsers to
bottom-up shift-reduce parsers. The idea is to treat terms at dif-
ferent levels of the balanced expression tree as distinct grammar
rules. For example, the summation of 1 + 2 + - - - + 7 + x5 has
the following grammar rules:

e Two adjacent x terms may be replaced by an a term which is
their sum. e.g., a1 = 1 + 2.

¢ Two adjacent a terms may be replaced by a b term which is their
sum. e.g., ba = a3 + a4.

e Two adjacent b terms may be replaced by a c term which is their
sum.

® ctc.

The summation iteratively goes through the following states:

sequence | stack | operation
T1 To T3 T4 Ts T T7 Ty | O shift 21
X2 X3 T4 5 T T7 T8 X1 shift L2
XT3 T4 T5 Te L7 I8 xT1 T2 reduce @1 = X1 + T2
X3 4 5 Te T7 T8 al shift L3
T4 T5 Te X7 T8 a1 T3 shift L4
Ts Te T7 T8 a1 T3 T4 reduce A2 = I3 + T4
Ts Te T7 T8 a1 as reduce D1 = @1 + a2
T5 Te T7 T3 | b1 shift L5
Xe T7 I8 bl x5 shift T
T7 I8 bl 5 Te reduce A3 = I'5 + Tg
T7 T8 bl as shift L7
xrs b1 as Ty shift L8
O | b1 a3 x7 x8 | reduce a4 = T7 + T8
0 b1 a3 aq reduce D2 = a3 + a4
0 b1 ba reduce C1 = b1 + b2
0| c1 done!

Figure 4. Steps in shift-reduce summation

If the sequence length is not a power of two, then there will
be some remaining terms on the stack that are irreducible upon
completion. To handle this case while maintaining the path-length
invariant of the balanced tree, we simply sum all terms on the stack
in reverse-order as soon as all terms of the original sequence have
been shifted.

A fairly clear pattern emerges that we use to simplify our imple-
mentation greatly. An a-reduction occurs after every second shift.
A b-reduction occurs after every four shifts. A ¢ reduction after ev-
ery 8.

Alternatively, we can formulate the pattern differently. After n
shifts, exactly ntz(n) reductions occur, where ntz is the number
of trailing zeros of the binary representation of n. This leads to the
implementation of shift-reduce summation in figure 5.

2.3 Tuning shift-reduce summation

Observing that reductions only occur every second shift, we can
unroll the loop once, shifting two elements which we immediately
reduce. In fact, we may unroll the loop any power of two iterations
and perform the balanced binary-tree explicitly. We show the al-
gorithm unrolled 4 times in figure 8. We must also handle residual
elements leftover if the sequence is not a multiple of the unrolling
factor in an epilogue loop.



double shift_reduce_sum (doublex x,
double stack[64], v;
size_-t p = 0;
for(size_t i=0; i<n; ++i) {
v = x[i]; // shift
for(size_t b=1; i & b; b<<=l, —p) // reduce
v += stack[p—1];
stack [p++] = v;

size_t n) {

double sum=0.0;
while (p) sum += stack[——p];

return sum;
}
Figure 5. Shift-reduce summation
double shift_reduce_sum_unrolled (doublex x,
size_t n)
{
double stack[64], v;
size_t p = 0;
for(size_t 1=0; i<n; i+=4) {
// shift
v = x[i] + x[i+1];
w = x[i+2] + x[1+3];
V=V 4+ Ww;
// reduce
for(size_t b=4; i & b; bs<=l, —p)
v += stack[p—1];
stack [p++] = v;
}
double sum=0.0;
size_t epilogue = n & “3ul;
for (size_t i=epilogue; i<n; ++i)
sum += x[i];
while (p) sum += stack[——p];
return sum;
}

Figure 6. Shift Reduce Algorithm Unrolled by 4

To further improve on the performance, the shift-reduce kernel
is SIMD optimized. A SIMD optimized example, assuming a 2-
way SIMD with 8 numbers to be reduced, is shown in Figure 7.
SIMD optimization should be advantageously applied to the un-
rolled version of the shift-reduce algorithm. The SIMD optimized
algorithm follows similar process as explained above except each
SIMD addition achieves effectively 2 scalar additions. For example,
bl and b2 are added onto b3 and b4, giving al and a2 all in SIMD
registers. This process can be easily extended to handle 4-way, or
8-way SIMD if the architecture supports it. Two important aspects
to note is that the final SIMD result which contains 2 accumulated
sums, o1 and 02, in this example, needs to be further reduced down
to one result. In the case of a 4-way SIMD, there would be four
sub-sums, e.g. o1, 02, 03, o4, that need to be reduced down to
one result via a tree like reduction step such as ((c1 + 02) + (03,
o4)). Intel provides a horizontal-add SIMD instruction which per-
forms this within a register. When necessary, the loop is peeled to
the nearest SIMD alignment boundary before the shift-reduce loop
begins. Furthermore, when applying SIMD optimization to the un-
rolled shift-reduce algorithm, it is important to also apply SIMD to
the epilogue loop.

It is important to note that the SIMDized shift-reduce loop is
not reassociated identically to the non-SIMDized version. A two-
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way SIMDized shift-reduce sum is equivalent to two parallel SIMD
sums; one summing elements with odd indices, and one with even
indices. However, the error bound measurements remain the same
as with pairwise summation.

ol

al a2 ad

bl | b2 b3 | bd b5 | b6 b7 | b&

Figure 7. Shift Reduce Algorithm Example with SIMD

// assume x is 256—bit aligned
// assume n is a multiple of 16

float shift_reduce_avx (floatx x, size_-t n)
{

__m256 stack[60];

size_-t p = 0;

for(size_t i=0; i+16 <=n; i += 16)

{

// unrolled shift+reduce
_.m256 v = _mm256_add_ps( -mm256_load_ps(x+i),

-mm256_load_ps(x+i+4));
_mm256_load_ps(x+i+8),

-mm256_load_ps(x+i+12))

_.m256 w = _mm256_add_ps(

v = _-mm256_add_ps(v,w);
// reduce
for(size_t bitmask=16;
i & bitmask;
bitmask <<= 1, —p)
{
v = .mm256_add_ps(v,
stack [p++] = v;

stack[p—1]);

// collapse irreducible stack entries

_.m256 vsum = _mm256_setzero_ps ();
for (size_t i=p; i>0; —i)
vsum = _mm?256_add_ps(vsum, stack[i—1]);

// horizontal sum

vsum = _mm256_hadd_ps(vsum, vsum);

vsum = _mm256_hadd_ps(vsum, vsum);

return _mm_cvtss_f32(
_mm-add_ss( -mm256_castps256_ps128 (vsum),

_mm256_extractf128 _ps (s,

Figure 8. AVX implementation of shift-reduce with prologue and
epilogue loops elided

3. Results
3.1 Experimental Setup

The performance numbers are benchmarked on a 2.2 GHz Sandy-
Bridge EP system running RHEL 6 Linux. The system consists of
two 8-core sockets with each core being capable of 2-way SMT.
Each core has a private L1 (32kB) and L2 (256kB) cache. The L3

1))



cache is shared among all cores of a socket socket and is 20MB in
size. All kernels are compiled with Intel 13 compilers.

The input data is a precomputed uniform random sequence of
floats or doubles stored in memory. To simulate cache-residency
of various working set sizes the elements of each working set size
were summed repeatedly with the first iteration omitted. We show
several working set sizes to exhibit performance characterisics for
data residency in different levels of the cache hierarchy.

3.2 Summation Kernel

We are interested in two metrics in the summation algorithms:
accuracy and throughput performance. The first is measured as the
base-2 logarithm of the recipricol relative error. This measurement
was used because it gives an approximation of the number of bits
correct in the mantissa of the floating point value and comparisons
of a perfectly accurate result are comparable to minute errors.

The formula used for error calculations is:

log,

X—0
where  is the summation result performed using arbitrary-precision
arithmetic using the GNU multi-precision library [1] and o is the
sum from the respective kernel. When o and x agree exactly, we
cap the answer at the number of bits the respective mantissa can
represent: 24 bits for floats, 53 for doubles.

Note that the formula simplifies to log, |x|—log, |x — o| which
can be internalized as approximately counting the number of bits to
which ¢ and x agree on.

The kernels evaluated include:

e several implementations of naive summation; with and without
SIMD.

e compensated sums: Kahan and Kahan-Babuska; with and with-
out SIMD.

e shift-reduce summation.

3.3 Accuracy

The relative error remains constant as the range of uniform random
numbers is varied. The only exception to this was that compensated
sums may produce NaNs, even with very short sequences when
the distribution is very large. We encountered this with both Kahan
summation and Kahan-Babuska summation both with and without
SIMD when we computed a sum-of-squares computation on data
distributed between 102",

All accuracy test measurements reported in the graphs used
uniform random floats between £1000.

An interesting observation is the consistent improvement to
accuracy SIMDization yields for Naive summation in figure 9.
This is because k-way simd is equivalent to summing k shorter
sequences in parallel dampening the resulting error. Both Kahan
and Kahan-Babuska get near-perfect results as expected and shift-
reduce summation occupies a medium, albeit a consistent one.

When we square the inputs as we sum in figure 10, the error
increases dramatically and naive summation is not even able to
claim three decimal digits of accuracy on sequences of 4 million el-
ements. Interestingly, the relative-error of shift-reduce summation
approaches that of compensated sums in this case.

3.4 Throughput

Figure 11 shows the single thread performance of three different
summation algorithms using 4-byte floating point input data. All
three algorithms have been SIMD vectorized by hand using AVX
or SSE intrinsics. Further, the loop body of each algorithm has been
unrolled to achieve better instruction level parallelism.
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Figure 9. Accuracies with Various Algorithms (single precision
float input)
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Figure 10. Accuracies with Various Sum of Square Algorithms

(single precision float input)

There is no surprise that naive summation achieves the highest
throughput. When the data is resident in L1 cache (32Kb or 8K
elements), it is faster by a wide margin. It reaches its peak through-
put with AVX of 22.5 billion elements per second with 8K element
sequences. A second, smaller, dropoff near 32K elements occurs
when the L2 cache is fully utilized; naive summation claims about
8.5 billion elements per second here. It stabilizes at about 6.5 bil-
lion elements per second streaming from memory.

In comparison, Shift-reduce only achieves about 10 billion el-
ements per second on 8K element sequences and Kahan-Babuska
is short of 4 billion elements per second here. At the L2-threshold,
Shift-reduce achives just short of 7.5 billion elements per second
and Kahan-Babuska holds stable shy of 4 billion elements per sec-
ond. When streaming from memory, Shift-reduce maintains about
5.9 billion elements per second and Kahan-Babuska about 3.3 bil-
lion elements per second.

Shift-reduce summation enjoys 86% of the throughput of naive
summation when streaming from L2 and 90% when streaming from
memory. However, when sequences are small enough to fit in L2,



24

T
Naive-SSE
Naive+AVX
ShiftReduce+SSE
ShiftReduce+AvVX
KahanBabuska+SSE
KahanBabuska+AVX

Throughput (giga-elements/second)

12
10

g | !

. . T
4§Mf
e Lt
O | | |

Sequence Length (elements)

Figure 11. Throughput Comparisons between Summation Algo-
rithms
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Figure 12. Performance of Kahan Babuska Algorithms with Vari-
ous Input Transformations

the loss of accuracy to using naive summation, as seen in figure 9
is negligible if SIMD is used. When naive summation begins to
degrade in accuracy, near about 128K elements, the performance
gap is narrow.

The two cliffs are less obvious with the shift reduce algorithm
using SSE and with the Kahan-Babuska algorithm. This is because
the core is not drawing the data fast enough given the extra compu-
tations that need to be performed. Being the algorithm with high-
est accuracy, Kahan-Babuska is the most computationally inten-
sive algorithm. The if-converted Kahan-Babuska algorithm which
makes SIMD vectorization possible is shown in Figure 13. The
accuracy improvement of Kahan-Babuska over Shift-Reduce sum-
mation is marginal while getting only half of the throughput. This
suggests Shift-Reduce summation as a serious candidate when ac-
curate sums are desired.

Kahan-Babuska is a well known algorithm which exhibits the
same accuracy as the original Kahan algorithm. By doing the error
compensation outside of the accumulation loop, it avoids the loop
carried dependence that is in the original Kahan algorithm. As such,
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float kahan_babuska_sum (floatx x,
float sum=0.0, error=0.0;
for(size_t i=0; i<n; ++i) {

size_t n) {

float a = (fabs(sum)>fabs(x[i]) ? sum x[1];
float b = (fabs(sum)>fabs(x[i]) ? x[i] sum ;
sum += x[i];
error += (a — sum) + b;

}

return sum + error;

}

Figure 13. The if-converted Kahan-Babuska Algorithm for SIMD
Vectorization.

it is amenable for SIMD vectorization. One important advantage
we take is in realizing that if the input x[i] in Figure 13 is always
positive, the compare and select statements (computing a and b)
can be turned into usages of a max and a min intrinsics.

For example, if results are clamped to zero or sequared, we see
a performance improvement in figure 12. When no transformation
or assertion of positive data is made we see performance roughly
halved.

All three curves make use of AVX on single precision floating
point input and include the transformation overhead. The identify-
float-avx is performance when no transformation is done on the
input data and hence no additional overhead. The clamped-float-
avx is performance when when negative input values are clamped
to zero followed by summation. The squared-float-avx is per-
formance when input values are squared followed by summation.
All three curves shows cliffs at the drop off of each cache level.
However, it is clear that squared and clamped summation achieve
much better performance than identity summation despite having
the need to do the extra computation to first squaring or clamping
the input data. This is attributed to the effective use of min and max
intrinsics in the loop body.

One important point is that the shift-reduce algorithm and the
Kahan-Babuska algorithm both achieve near theoretical accuracy
of 24 bits as shown in Figure 9.

4. Conclusion

The first point that needs to be made is to know when to reach for a
different summation algorithm from the iconic C accumulator loop.
This is often a difficult judgement call to make, because unlike poor
performance, poor accuracy can be difficult to spot.

A good rule of thumb appears to be that you lose about half a
bit of accuracy every time you double the length of your sequence.
Whether this means you are losing accuracy depends on the range
of signifigant bits in your input. The results may be more extreme
if you are transforming your data such as in a sum of squares
operation where the accuracy deteriorates rapidly. A good threshold
to consider shift-reduce summation at is about 100K elements.

A second takeaway from this study is that reassociation towards
a balanced binary tree, even by SIMDizing a naive sum, very
quickly improves accuracy.

Finally, the proposed shift-reduce algorithm provides a bal-
anced tradeoff between naive summation and compensated sums. It
matches naive sums in performance except when they are so short
that accuracy is not at risk in the first place. It is easily twice as fast
as our best tuned compensated sums and at least 4 or 5 times faster
than a reference implementation. More importantly on average it
rarely differs in more than the least signifigant bit.



The results scale to doubles as well which were not discussed
in great detail in this paper, but the loss of accuracy of naive
summation is less signifigant overall.
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