
1

Making C++ Better for Game Developers – Progress Report
Author: Patrice Roy, based on suggestions made from various experts from the game

development domain, including Nicolas Fleury (Ubisoft), Gabriel Morin (EIDOS), Arthur O’Dwyer,

Matt Bentley, Staffan Tjernstrom and others.

Reply to: patricer@gmail.com

Target audience: EWG, SG14

Contents
Making C++ Better for Game Developers – Progress Report .. 1

Abstract .. 2

Guiding Principles ... 2

Things that simplify C++ are good .. 2

Things that make C++ more teachable are good .. 2

Avoid negative performance impacts ... 3

Debugging matters ... 3

SG14 Process .. 3

Actions .. 4

Requests by Category (Overview)... 4

Compile-Time Computing ... 4

Memory Allocation and Deterministic Behavior ... 5

Attributes ... 6

Move Semantics ... 7

Handling Disappointment ... 8

Pattern Matching .. 8

Tooling and Ease-of-Coding .. 8

Networking ... 8

Parallel and Concurrent Computing ... 9

Logging and I/O .. 9

Numeric Computing ... 9

Miscellaneous ... 10

2

Abstract
Starting December 2019, SG14 has begun collecting information as to how C++ could be

improved from the perspective of game developers. The requests that have been collected cam

from prominent members of the game development community, starting with the greater

Montréal area (Québec, Canada), a well-known hub for that application domain.

These requests were brought to several SG14 meetings to be discussed, categorized and for a

selection to be made. SG14 is the C++ Standards Committee study group for low-latency, game,

finance, and embedded systems programming. The intent of this process was to identify, from

the set of requests that had been collected, those that would benefit this important subset of

the C++ programmer community the most and turn these into individual papers to be discussed

on their own merits.

This progress report aims to provide an overview of this overall effort. It establishes the guiding

principles behind the set of requests. It also identifies the topics for papers know to come, which

form an open set as we expect more to be added once this effort is made public, and it identifies

those requests which have already been serviced through existing efforts.

Note: most of the suggestions in this document would not be major features of C++. The set of

suggestions, however, can be seen as significant, aiming to address aspects of the language that

(a) make the language more difficult to us or learn than it could be, (b) brings users to write

workarounds or (c) hamper adoption of subsets of the language.

Guiding Principles
Contributors to this effort have committed to the following guiding principles:

• Things that simplify C++ are good

• Things that make C++ more teachable are good

• Avoid negative performance impacts

• Debugging matters

Not all suggestions made throughout this process fall into the purview of one or more of these

guiding principles, but they all aim not to contravene these principles.

Things that simplify C++ are good
C++ is a rich but complex language. Some of the suggestions that stem from this effort aim to

reduce the number of “gotchas” and pitfalls faced by C++ programmers and would reduce the

number of workarounds and trickery involved in using C++ to write games.

Some specific remarks that have been made include:

• Things that make generic programming simpler are appreciated.

• One needs to understand how the code will run based on the source code.

• Unexpected side-effects are to be avoided.

Things that make C++ more teachable are good
The game programming industry is big and turnover rates make training new colleagues

something important. Things that make C++ more teachable reduce costs, make professional

3

insertion easier, and help reduce debugging efforts (see also Erreur ! Source du renvoi

introuvable.).

Avoid negative performance impacts
SG14 developers use C++ for many reasons, but control and performance characteristics are

very high on the list. Things with negative impact on performance are unacceptable to them.

This means that new features that could impact performance negatively need to be

accompanied with an opt-out mechanism.

Debugging matters
For some of the suggestions in this document, availability only in so-called « debug » builds

would be acceptable due to the costs expected in so-called « release » builds. Contributors

know that the standard does not recognize this distinction but hope that we can find a way to

make some of the more costly features available in a conditional manner.

• Contributors have discussed the importance of manageable « Debug/ -O0 » builds as

today, they sometimes need to debug code built with « Release/ -O2/ -O3 » builds to

make their programs fit into memory.

• Many have reported that design styles tend to change (monadic programming,

functional programming, lazy execution) making it harder to grasp what’s going on from

the source code (it’s « more magic »)

• Call stacks that are too deep make debugging harder

SG14 Process
The author has initially met with prominent members of the game development community to

collect an initial set of requests; these meetings were started at the behest of said members

themselves, and as such this document aims to carry their voice.

The principal author of this document then grouped the requests by topic to turn this set of

ideas into an organized whole to help discussion.

Following this initial collection and grouping effort, this unnamed proto paper was brought to

several SG14 meetings to progress through the set of requests found therein. For each

suggestion, SG14 provided guidance:

• Is this feature something SG14 wants?

• If the suggestion is to be pursued, should it be pursued on its own or as part of a related

group?

• Is this something that can be achieved with existing language facilities? If so, is it

worthwhile to pursue the suggestion?

• Are there alternative approaches that would be preferable?

This led to questions being raised, requests being dropped, requests being modified,

workarounds being identified, etc. This discussion effort is still ongoing, but sufficient progress

has been made that the production of actual papers can begin.

4

Actions
For each suggestion / suggestion category / suggestion group in this document, we seek the

following guidance from SG14:

• Is this something SG14 wants?

• If the suggestion is to be pursued, should it be pursued on its own or as part of a related

group?

• Is this something that can be achieved with existing language facilities? If so, is it

worthwhile to pursue the suggestion?

• Are there alternative approaches that would be preferable?

Requests by Category (Overview)
What follows is a set of tabular overviews of the effort so far. Requests have been categorized in

one of the following groups:

• Compile-Time Computing

• Memory Allocation and Deterministic Behavior

• Attributes

• Move Semantics

• Handling Disappointment

• Pattern Matching

• Tooling and Ease-of-Coding

• Networking

• Parallel and Concurrent Computing

• Logging and I/O

• Numeric Computing

• Miscellaneous

In each table below, you will find:

• A (very brief) summary of what the request is

• Its status from the perspective of SG14: not pursued (the group was not convinced

enough, or there exists a workaround already), adjusted (to be pursued but in a

different form), pursued (papers incoming), to be discussed (not seen yet by SG14).

Compile-Time Computing
The set of compile-time computing aspects of C++ grows with each version of the standard. The

following suggestions would help game developers perform optimizations that seems

worthwhile to them.

Request Status

Allow overloading based on constexpr
arguments

Pursued (design space to be explored). Use-
cases have been presented from different
application domains. Has been discussed in
the past: https://wg21.link/p1045

Static reflection Pursued in order to make the important
aspects of this feature for SG14 members

https://wg21.link/p1045

5

known to the wider C++ programming
community

Compile-time string interpolation Pursued. Some progress has been made with
https://wg21.link/p2741 but more is needed

Memory Allocation and Deterministic Behavior
Controlling dynamic memory allocation mechanisms closely is important for games in order to

ensure acceptable performance, including more deterministic execution speed.

Note: in the suggestions below, SOO stands for “small object optimization”.

Request Status

SOO Thresholds Pursued (design space exploration). Knowing
the memory allocation threshold for SOO-
enabled types (std::function, std::string and
others), probably through compile-time traits
to let programmers avoid resorting to
dynamic memory allocation unwillingly and in
a portable manner.

std::inplace_function Pursued (candidate for freestanding).
std::function can allocate if constructed from
a function object of a size greater than an
implementation-specific threshold, so some
companies reject that type outright and roll
out their own homemade version.
For this reason, a std::inplace_function or
equivalent, which never allocates, is desired.
Note: this has been discussed by SG14 in the
past1 and there is implementation experience

SOO-Enabled vector Pursued (might be covered already by
static_vector<T>). A
std::vector<T>/std::array<T,N> alternative
that has a (potentially compile-time known)
capacity and never allocates

External Buffer Vector Pursued (might be solved by PMR vector and
monotonic_buffer_resource). A vector that
manages an externally provided buffer and
switches to heap-allocated memory should
that buffer’s capacity not be sufficient

Intrusive Containers Pursued (see if https://wg21.link/p0406 is
appropriate or needs to be modified). Used
extensively by many SG14 contributors,
particularly intrusive lists.

InplaceContainer<Size> Inheriting from
Container Pattern

Pursued (design space exploration required;
might be solved through PMR containers). A
set of containers (e.g.: inplace_vector<T,Sz>)
that derive from standard containers and

1 https://github.com/WG21-SG14/SG14/blob/master/Docs/Proposals/NonAllocatingStandardFunction.pdf

https://wg21.link/p2741
https://wg21.link/p0406
https://github.com/WG21-SG14/SG14/blob/master/Docs/Proposals/NonAllocatingStandardFunction.pdf

6

expose the same interface but supply a fixed-
size buffer to manage by default)

Heap-Free Functions Pursued (candidates for freestanding). Add
heap-free options to all situations that might
lead to dynamic memory allocation (e.g.:
passing client-allocated buffers). In some
cases, that might simply be a matter of
adding a function overload taking an array of
std::byte as argument

“No RTTI” guarantees Pursued. Many SG14 companies compile with
RTTI turned off, but might still want to use
PMR allocators; however, some
implementations use dynamic_cast in their
PMR types. Offering PMR with a “no-RTTI”
guarantee, or at least a compile-time
checkable guarantee would be desirable.
Consider eliminating note [mem.res.private-
note-1]2

“Predictable lambdas” Might be pursued (under exploration). Being
able to declare a lambda on the stack,
without initializing it right away, and having
access to its constructor (some sort of
placement new on an uninitialized lambda,
kind of like an optional<lambda>)

Attributes
There are a number of suggestions related to attributes. All attribute names below are tentative

(some of the names proposed, e.g. [[invalidate]] might conflict with other ongoing efforts in the

language). Further exploration can change some of these from attributes to some other form

(keyword, function, trait, etc.)

Request Status

Support for User Attributes

Might be pursued (under exploration).
Allowing users to implement their own
attributes to replace macro-based tricks
frequently found in game engines with
something “in-language”

[[invalidate_dereferencing]] Pursued. Annotate the pointer argument
passed to realloc() with
[[invalidate_dereferencing]]. The intent is
that the compiler should consider *ptr to be
invalid after the call to realloc(), but using ptr
without dereferencing would still be valid.
Would fix what some consider to be a “UB
pitfall” with realloc(), while providing an
attribute usable for user code wanting the

2 https://eel.is/c++draft/mem.res.class#mem.res.private-note-1

https://eel.is/c++draft/mem.res.class#mem.res.private-note-1

7

same optimization opportunities and
semantics.

[[invalidate]] Pursued (there is implementation
experience). Annotate the pointer argument
passed to free() with [[invalidate]]. The intent
is that the compiler should consider both ptr
and *ptr to be invalid after the call to free().
This would address what some consider to be
“UB pitfalls” at compile-time, while providing
an attribute usable for user code wanting the
same optimization opportunities and
semantics.

[[simd]] Not pursued as such (work ongoing for the
Parallelism TS).

[[no_copy]] Might be pursued (under exploration).
Annotate types and function arguments with
[[no_copy]] if only move and RVO are
acceptable. Type definition and function code
can also evolve over time, making the
guarantee at the function level is valuable.
Note: part of the intent is to help with junior
programmers who might not understand
every intricacy of C++ value categories.

[[rvo]] Might be pursued (under exploration).
Annotate functions with [[rvo]] to ensure
they only compile if used in a RVO situation.
There might be a basis in
tps://wg21.link/P2025 and in Clang's non-
standard [[musttail]] attribute:
https://reviews.llvm.org/D99517

[[side_effect_free]] Pursued. Annotate functions with
[[side_effect_free]] and make this checkable
at compile-time. The intent would be to open
up optimization opportunities such as
automatic memoization. Prior work includes
[[pure]] proposals and the [[conveyor]]
suggestion for contracts.

[[trivially_relocatable]] There is strong interest in a
[[trivially_relocatable]] attribute such as the
one in https://wg21.link/p1144
Note: some companies have their own
is_memcopyable trait to simulate
[[relocatable]].

Move Semantics

Request Status

Move semantics are perceived as important
but too easy to misuse

Might be pursued (under exploration): make
it so a function taking const T&& as argument

https://reviews.llvm.org/D99517

8

fails to compile or is warned about (too easy
to write such a signature by copy-pasting
from a copy constructor / copy assignment).
Reported as a pain point by numerous
contributors.

Handling Disappointment

Request Status

So-called « Herbceptions » are looked upon
favorably

Pursued. It’s more than “herbceptions”
however: this is a major and multi-faceted
issue that requires a paper on its own

Pattern Matching

Request Status

The switch-case style pattern matching
(inspect) is looked upon favorably

This is more of a general support from SG14
for the general Pattern Matching features
effort than a proposal on its own

Tooling and Ease-of-Coding
Game development companies typically develop tools to assist them and make them more

productive. Even though C++ has not (traditionally) been known as the most “toolable”

language, there are ways in which C++ could become better in that area. The items in this

section include aspects which would make C++ easier to debug.

Note: recent progresses (std::mdspan, some vendors making it easier to avoid stepping through

std::move() or std::forward()) have been noted and appreciated by SG14 contributors.

Request Status

nameof operator Pursued (exploration of design space
required). See the nameof operator in C# and
#[derive(Debug)] in Rust for inspiration (also
https://github.com/Neargye/nameof). Note:
might be solved by SG7 efforts

Better compile-time error detection This is a general wish for things that will help
compiler catch more errors at compile-time
(there’s hope that concepts will play a role
there). Clarifying what the compiler “sees”
and what it does not “see” would help wrote
more “debuggable” code.

Conditional compilation Pursued (exploration of design space
required). Something that would replace
#ifdef … #endif and would allow one’s code
to be checked for one platform while
compiling for another (it seems to be a pain
point for individuals writing code for multiple
platforms).

Networking
Networking is something that every game engine has to implement by itself; a std:: version

would be seen as something useful. Boost ASIO seems heavy; a replacement for C sockets would

https://github.com/Neargye/nameof

9

be a huge win. Games would probably use the low-level std:: API for networking and use their

own mechanisms on top of it, including their own asynchronous utilities.

Note: there have been discussions in WG21 as to whether it would be reasonable to provide a

basic sockets replacement for C++ would be useful given all of the security concerns we have

today. For games, the answer to this would be “yes”. Not everyone needs security; some people

just need fast and low-level. For embedded, a small and fast low-level interface would be most

important (there’s a stack everybody uses: https://en.wikipedia.org/wiki/LwIP).

Request Status

A small, fast and low-level layer including
sockets.

Pursued.

Parallel and Concurrent Computing

Request Status

Compile-time Evaluated Thread-
Safety

Might be pursued (under exploration):to allow
enforcing Rust-inspired resource management in
order to help validation non-thread-safe operations at
compile-time

Naming, tracing and debugging Might be pursued (under exploration): adding facilities
to portably name mutexes and threads

Support of almost portable facilities Might be pursued (under exploration): adding facilities
to control thread priority and stack size. There has
been work already, see https://wg21.link/p0484,
https://wg21.link/p0320 and https://wg21.link/p2019
as well as
https://clang.llvm.org/docs/ThreadSafetyAnalysis.html

Logging and I/O

Request Status

Better logging facilities Might be pursued (under exploration): some
languages have optional attributes to know
“who called you” which can be useful for
logging. Note: std::stacktrace will help. Note:
static reflection will help

Numeric Computing

Request Status

Linear algebra Pursued. SG14 supports the addition of
foundational types for linear algebra (efforts
are ongoing in that respect). Each game
engine has its own version of such utilities,
and so does each middleware, but there
seems to be “holes” in most of them. In
general, it would be good if what can be done
in a language such as HLSL could be done
directly in C++.

10

Opt-in UB on Unsigned Overflow Might be pursued (under exploration): There
is a need for an integral type (at least the 32
bits flavor) for which overflow would be UB

Miscellaneous

Request Status

Forward Class Declarations with
Inheritance

Might be pursued (under exploration): it would be
useful to allow a forward class declaration specifying
inheritance relationships when using pointer-to-
base / pointer-to-derived conversions

“namespace class” Might be pursued (under exploration): when
defining a class’ member functions in a .cpp file,
repeating the class name everywhere can get
tedious; reducing the noise would be useful

Constrained Construction Might be pursued (under exploration): a syntax that
would constrain the number of constructors
involved at the call site (e.g.: construct(1) auto a =
f();) might help protecting against performance
losses resulting from unwanted conversions.

Flags-Only enums Might be pursued (under exploration):
enumerations that can only be flags, which could
influence “stringification”, particularly if two
symbols have the same value.
Note: workarounds have been proposed in the past,
notably https://gpfault.net/posts/typesafe-
bitmasks.txt.html,
https://dalzhim.wordpress.com/2016/02/16/enum-
class-bitfields/ and
https://dalzhim.github.io/2017/08/11/Improving-
the-enum-class-bitmask/

Member Functions of Enums Might be pursued (under exploration): of particular
interest would be conversion operators

Better Support of Arrays with enum-
Based Strong Types

Might be pursued (under exploration): enum-based
strong types and arrays mix unpleasantly, which
blocks their adoption in some companies. See
https://wandbox.org/permlink/dZvsd4MTz3WD7282

Making std::initializer_list Movable Might be pursued (under exploration): this would
allow such things as initializing a
std::vector<std::unique_ptr<T>> with a pair of
braces containing a sequence of calls to
std::make_unique<T>(). Prior efforts include
https://wg21.link/p0065

Explicit list-initialization Might be pursued (under exploration): looking for
fixes to the dichotomy between such situations as
vector<int>(10,-1) and vector<int>{10,-1} which
have been “gotchas” of C++ since C++11. Some
forbid constructors taking initializer_list arguments
for that reason

11

Efficient Downcasting Might be pursued (under exploration): need for a
way to downcast to the most-derived type at low
cost, e.g.: using sorted vtables for statically linked
.exe. Companies write their own currently but it’s
nonportable

Covariant Cloning Might be pursued (under exploration): being able to
have covariant return types based on unique_ptr<T>
as well as on T*. There has been prior work in that
regard3

Homogeneous Variadics Might be pursued (under exploration): making it
easier to write variadic packs where all elements are
of the same type. Note : can be achieved in C++20
through techniques such as
https://wandbox.org/permlink/f2TasMibAYysw2pM

Named Arguments Might be pursued (under exploration): prior efforts
include https://wg21.link/n4172. Made possible in
part with designated initializers.

SoA to AoS Pursued (design space to be explored): arrays of
structs (AoS) make it easier to understand and
structure classes but are often less efficient in terms
of time and space usage than structs of arrays (SoA).
A way to “transform” something expressed as an
AoS into its SoA equivalent would be very useful

Unified Function Call Syntax Might be pursued (under exploration): tooling and
ease of use are motivating factors. Code editors
tend to be better at assisting programmers with
x.f(y) than they are with f(x, y). There have also been
reports that free functions tend to be coded two or
three times separately as programmers don’t always
find them, and end up rolling their own

3 https://deque.blog/2017/09/08/how-to-make-a-better-polymorphic-clone/ which uses CRTP,
https://www.fluentcpp.com/2017/09/12/how-to-return-a-smart-pointer-and-use-covariance/ which is a
bit involved, and https://herbsutter.com/2019/10/03/gotw-ish-solution-the-clonable-pattern/ which
requires metaclasses

