
D1709r3 Graph Library
Phillip Ratzloff (SAS Institute)

Andrew Lumsdaine (TileDB/University of Washington)

Document Number: D1709r3
Date: TBD, 2022 (mailing)
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: SG19, WG21, LEWG
Source: Github
Issue Tracking: Github
Contributors: Richard Dosselmann (University of Regina)

Michael Wong (Codeplay)
Matthew Galati (Amazon)
Jens Maurer
Domagoj Saric
Jesun Firoz
Kevin Deweese

Emails: Phil.Ratzloff@sas.com
Andrew.Lumsdaine@tiledb.com
dosselmr@cs.uregina.ca
michael@codeplay.com
magalati@amazon.com

Reply to: Phil.Ratzloff@sas.com

https://github.com/stdgraph/graph-v2
https://github.com/stdgraph/graph-v2/issues


Contents

1



Revision History

P1709R3
This was a major redesign that incorporated all the experience and input from the past 3 years.

• Reduce the scope to focus on an edge list and adjacency graph with outgoing edges only, and remove mutable interface
functions.

• Replace directed and undirected concepts with overridable types of unordered edge for a graph implementation type.

• Simplify the Graph Container types and functions. In particular, const and non-const variations were consolidated to a
single definition to handle both cases when appropriate.

• All Graph Container Interface functions are customization points.

• Introduce Views, inspired by NWGraph design, resulting in simpler and cleaner interfaces to traverse a graph, and
simplifying the container interface design.

• Revisit the algorithms to be considered. transitive closure has been dropped. The final list hasn’t been finalized yet.

• Replace the two container implementations with csr graph.

P1709R2
Define the uniform API for undirected and directed algorithms (an extended API also exists for directed graphs). Added
concepts for undirected, directed and bidirected graphs. Refined DFS and BFS range definitions from prototype experience.
Refined shortest paths and transitive closure algorithms from input and prototype experience.

P1709R1
Rewrite with a focus on a purely functional design, emphasizing the algorithms and graph API. Also added concepts and
ranges into the design. Addressed concerns from Cologne review to change to functional design.

P1709R0
Focus on object-oriented API for data structures and example code for a few algorithms.

1 Introduction
This document proposes the addition of graph algorithms, graph views, graph container interface and a graph container
implementation to the C++ library to support machine learning (ML), as well as other applications. ML is a large and
growing field, both in the research community and industry, that has received a great deal of attention in recent years. This
paper presents an interface of the proposed algorithms, views, graph functions and containers.

1.1 Motivation
Graphs, used in ML and other scientific domains, as well as industrial and general programming, do not presently exist in the
C++ standard. In ML, a graph forms the underlying structure of an artificial neural network (ANN). In a game, a graph can
be used to represent the map of a game world. In business environments, graphs arise as entity relationship diagrams (ERD)
or data flow diagrams (DFD). In the realm of social media, a graph represents a social network.

1.2 Impact on the Standard
This proposal is a pure library extension.

1.3 Interaction wtih Other Papers
There is no interaction with other proposals to the standard.

2



1.4 Goals and Priorities
• Follow the separation of algorithms, ranges, views and containers established by the standard library.

• All free functions should be customization point objects, unless there’s a good reason not to. Reasonable default imple-
mentations should be provided whenever possible.

• Graph algorithms have the following characteristics

– Support syntax that is simple, expressive and easy to understand. This should not compromise the ability to write
high-performance algorithms.

– Vertices are required to be in random access containers with an integral vertex id in this proposal.

• Graph views provide common traversals of a graph’s vertices and edges that is more concise and consistant than using the
graph container interface directly. They include simple traversals like vertexlist (all vertices in the graph) and incidence
edges (edges on a vertex), as well as more complex traversals like depth-first and breath-first searches.

• The Graph Container Interface provides a consistent interface that can be used by algorithms and views. It has the
following characteristics:

– The interface models an adjacency graph container, which is an outer range of vertices with an inner range of
outgoing (a.k.a. incidence) edges on each vertex.

– Definition of concepts, types, type traits, type aliases, and functions used by algorithms and views.

∗ Type traits will be defined that can be overridden for each graph container to give additional hints that can be
used by algorithms to refine their behavior, such as adjacency matrix and unordered edge.

– Support of optional user-defined value types on an edge, vertex and/or the graph itself.

– Allow for useful extensions of the graph data model in future proposals or in external graph implementations.

• Provide an initial suite of useful functionality that includes algorithms, views, container interface, and at least one con-
tainer implementation.

1.5 What this proposal is not
This paper limits itself to adjacency graphs only, including an outer range of vertices with an inner range of outgoing edges on
each vertex. It also includes an edgelist of all edges in the graph, either as a edgelist view or a simple range with a source id
and target id. It does not include incoming edges on a vertex, though that could be a future extension.

Bipartite graphs are being investigated. A general design has been established and it needs to be implemented to validate
that it will work and see what areas of the design are impacted.

Hypergraphs are not supported.
Parallel versions of the algorithms are not included for several reasons. The executors proposal in P2300r5 [?] is expected

to introduce new and better ways to do parallel algorithms beyond that used in the parallel STL algorithms and we would like
to wait for finalization of that proposal before committing to parallel implementations. Secondly, many graph algorithms don’t
benefit from parallel implementations so there is less need to offer an implementation. Lastly, it will help limit the size of this
proposal which is already looking to be large without it. It is expected that future proposals will be submitted for parallel graph
algorithms.

1.6 Prior Art
boost::graph
Other?

1.6.1 Inspiration

NWGraph

3



1.7 Alternatives

1.8 Future Directions

2 Design - Introduction
Table ?? shows the naming conventions used throughout this document.

Template Variable
Parameter Type Alias Names Description
G Graph

graph_reference_t<G> g Graph reference
GV val Graph Value, value or reference
V vertex_t<G> Vertex

vertex_reference_t<G> u,v,x,y Vertex reference. u is the source (or only) vertex.
v is the target vertex.

VId vertex_id_t<G> uid,vid,seed Vertex id. uid is the source (or only) vertex id.
vid is the target vertex id.

VV vertex_value_t<G> val Vertex Value, value or reference. This can be ei-
ther the user-defined value on a vertex, or a value
returned by a function object (e.g. VVF) that is
related to the vertex.

VR vertex_range_t<G> ur,vr Vertex Range
VI vertex_iterator_t<G> ui,vi Vertex Iterator. ui is the source (or only) vertex.

first,last vi is the target vertex.
VVF vvf Vertex Value Function: vvf(u)→ value
E edge_t<G> Edge

edge_reference_t<G> uv,vw Edge reference. uv is an edge from vertices u to
v. vw is an edge from vertices v to w.

EV edge_value_t<G> val Edge Value, value or reference. This can be ei-
ther the user-defined value on an edge, or a value
returned by a function object (e.g. EVF) that is
related to the edge.

ER vertex_edge_range_t<G> Edge Range for edges of a vertex
EI vertex_edge_iterator_t<G> uvi,vwi Edge Iterator for an edge of a vertex. uvi is an

iterator for an edge from vertices u to v. vwi is
an iterator for an edge from vertices v to w.

EVF evf Edge Value Function: evf(uv)→ value

Table 1: Naming Conventions for Types and Variables

2.1 Graph Data Models

2.1.1 Adjacency Graph

A graph [?] G = (V,E) is a set of vertices [?] V , points in a space, and edges [?] E, links between these vertices. Edges
may or may not be oriented, that is, directed [?] or undirected [?], respectively. Moreover, edges may be weighted [?], that
is, assigned a value. Both static and dynamic implementations of a graph exist, specifically a (static) matrix, each having the
typical advantages and disadvantages associated with static and dynamic data structures.

2.1.2 Edge List

2.2 Examples

2.2.1 Example: User

4



2.2.2 Example: Graph Author

3 Design - User Side

3.1 Algorithms
[PHIL: Algorithms marked [TBD] are provisional and may be moved to a separate proposal to keep the size of this proposal
manageable]

3.1.1 Dijkstra’s Shortest Paths

Dijkstra’s algorithm [?] ...

3.1.2 Bellman-Ford Shortest Paths

The Bellman-Ford algorithm [?] ...

3.1.3 Connected Components

Connected components [?] ...

3.1.4 Strongly Connected Components

Strongly connected components [?] ...

3.1.5 Biconnected Components

Biconnected components [?] ...

3.1.6 Articulation Points

Articulation points [?] ...

3.1.7 Minimum Spanning Tree

Minimum Spanning Tree [?] ...

3.1.8 [TBD] Page Rank

3.1.9 [TBD] Betweenness Centrality

3.1.10 [TBD] Triangle Count

3.1.11 [TBD] Subgraph Isomorphism

3.1.12 [TBD] Kruskell Minimum Spanning Tree

3.1.13 [TBD] Prim Minimum Spanning Tree

3.1.14 [TBD] Louvain (Community Detection)

3.1.15 [TBD] Label propagation (Community Detection)

3.2 Views
The views in this section provide comman ways that algorithms use to traverse graphs. They are a simple as iterating through
the set of vertices, or more complex ways such as depth-first search and breadth-first search. The also provide a consistent and
reliable way to access related elements using the View Return Types, and guaranteeing expected values, such as that the target
is really the target on unordered edges.

5



3.2.1 Return Types

Views return one of the types in this section, providing a consistent set of values. They are templated so that the view can adjust
the actual values returned to be appropriate for its use. The following examples show the general design and how it’s used.
While it focuses on vertexlist to iterate over all vertices, it applies to all view functions.

// the type of uu is vertex_view<vertex_id_t<G>, vertex_reference_t<G>, void>
for(auto&& uu : vertexlist(g)) {

vertex_id<G> id = uu.id;
vertex_reference_t<G> u = uu.vertex;
// ... do something interesting

}

Structured bindings make it simpler.

for(auto&& [id, u] : vertexlist(g)) {
// ... do something interesting

}

A function object can also be passed to return a value from the vertex. In this case, vertexlist(g) returns vertex_view
<vertex_id_t<G>, vertex_reference_t<G>, decltype(vvf(u))>.

// the type returned by vertexlist is
// vertex_view<vertex_id_t<G>,
// vertex_reference_t<G>,
// decltype(vvf(vertex_reference_t<G>))>
auto vvf = [&g](vertex_reference_t<G> u) { return vertex_value(g,u); };
for(auto&& [id, u, value] : vertexlist(g, vvf)) {

// ... do something interesting
}

struct vertex_view<Vid, V, VV>
vertex_view is used to return vertex information. It is used by vertexlist(g), vertices_breadth_first_search
(g,u), vertices_depth_first_search(g,u) and others. The id member always exists.

template <class VId, class V, class VV>
struct vertex_view {

VId id; // vertex_id_t<G>, always exists
V vertex; // vertex_reference_t<t>
VV value;

};

Specializations are defined with V=void or VV=void to suppress the existance of their associated member variables, giving
the following valid combinations in Table ?? . For instance, the second entry, vertex_view<VId, V> has two members
{VId id; V vertex;}.

Template Arguments Members
vertex_view<VId, V, VV> id vertex value
vertex_view<VId, V, void> id vertex
vertex_view<VId, void, VV> id value
vertex_view<VId, void, void> id

Table 2: vertex_view Members

struct edge_view<VId, Sourced, E, EV>
edge_view is used to return edge information. It is used by incidence(g,u), edgelist(g), edges_breadth_first_search
(g,u), edges_depth_first_search(g,u) and others. When Sourced=true, the source_id member is included
with type VId. The target_id member always exists.

6



template <class VId, bool Sourced, class E, class EV>
struct edge_view {

VId source_id; // vertex_id_t<G>, exists when SourceId==true
VId target_id; // vertex_id_t<G>, always exists
E edge; // edge_reference_t<G>
EV value;

};

Specializations are defined with Sourced=true|false, E=void or EV=void to suppress the existance of the associated mem-
ber variables, giving the following valid combinations in Table ?? . For instance, the second entry, edge_view<VId,true
,E> has three members {VId source_id; VId target_id; E edge;}.

Template Arguments Members
edge_view<VId, true, E, EV> source_id target_id edge value
edge_view<VId, true, E, void> source_id target_id edge
edge_view<VId, true, void, EV> source_id target_id value
edge_view<VId, true, void, void> source_id target_id
edge_view<VId, false, E, EV> target_id edge value
edge_view<VId, false, E, void> target_id edge
edge_view<VId, false, void, EV> target_id value
edge_view<VId, false, void, void> target_id

Table 3: edge_view Members

struct neighbor_view<VId, Sourced, V, VV>
neighbor_view is used to return information for a neighbor vertex, through an edge. It is used by neighbors(g,u).
When Sourced=true, the source_id member is included with type VId. The target_id member always exists.

template <class VId, bool Sourced, class V, class VV>
struct neighbor_view {

VId source_id; // vertex_id_t<G>
VId target_id; // vertex_id_t<G>, always exists
V target; // vertex_reference_t<G>
VV value;

};

Specializations are defined with Sourced=true|false, E=void or EV=void to suppress the existance of the associated mem-
ber variables, giving the following valid combinations in Table ?? . For instance, the second entry, neighbor_view<VId,
true,E> has three members {VId source_id; VId target_id; V target;}.

Template Arguments Members
neighbor_view<VId, true, E, EV> source_id target_id target value
neighbor_view<VId, true, E, void> source_id target_id target
neighbor_view<VId, true, void, EV> source_id target_id value
neighbor_view<VId, true, void, void> source_id target_id
neighbor_view<VId, false, E, EV> target_id target value
neighbor_view<VId, false, E, void> target_id target
neighbor_view<VId, false, void, EV> target_id value
neighbor_view<VId, false, void, void> target_id

Table 4: neighbor_view Members

7



3.2.2 Common Types and Functions for “Search”

The depth first search, breadth first search, and toplogical sort searches there are a number of common types and functions
that apply to them.

Here are the types and functions for cancelling a search, getting the current depth of the search, and active elements in the
search (e.g. number of vertices in a stack or queue).

// enum used to define how to cancel a search
enum struct cancel_search : int8_t {

continue_search, // no change (ignored)
cancel_branch, // stops searching from current vertex
cancel_all // stops searching and dfs will be at end()

};

// stop searching from current vertex
template<class S)
void cancel(S search, cancel_search);

// Returns distance from the seed vertex to the current vertex,
// or to the target vertex for edge views
template<class S>
auto depth(S search) -> integral;

// Returns number of pending vertices to process
template<class S>
auto size(S search) -> integral;

Of particular note, size(dfs) is typically the same as depth(dfs) and is simple to calculate. breadth first search
requires extra bookkeeping to evaluate depth(bfs) and returns a different value than size(bfs).

The following example shows how the functions could be used, using dfs for one of the depth first search views. The
same functions can be used for all all search views.

auto&& g = ...; // graph
auto&& dfs = vertices_depth_first_search(g,0); // start with vertex_id=0
for(auto&& [vid,v] : dfs) {

// No need to search deeper?
if(depth(dfs) > 3) {

cancel(dfs,cancel_search::cancel_branch);
continue;

}

if(size(dfs) > 1000) {
std::cout << "Big depth of " << size(dfs) << ’\n’;

}

// do useful things
}

3.2.3 vertexlist Views

vertexlist views iterate over a range of vertices, returning a vertex_view on each iteration. Table ?? shows the
vertexlist functions overloads and their return values. first and last are vertex iterators.

3.2.4 incidence Views

incidence views iterate over a range of adjacent edges of a vertex, returning a edge_view on each iteration. Table ??
shows the incidence function overloads and their return values.

Since the source vertex u is available when calling an incidence function, there’s no need to include sourced versions
of the function to include source_id in the output.

8



Example Return
for(auto&& [uid,u] : vertexlist(g)) vertex_view<VId,V,void>
for(auto&& [uid,u,val] : vertexlist(g,vvf)) vertex_view<VId,V,VV>
for(auto&& [uid,u] : vertexlist(g,first,last)) vertex_view<VId,V,void>
for(auto&& [uid,u,val] : vertexlist(g,first,last,vvf)) vertex_view<VId,V,VV>
for(auto&& [uid,u] : vertexlist(g,vr)) vertex_view<VId,V,void>
for(auto&& [uid,u,val] : vertexlist(g,vr,vvf)) vertex_view<VId,V,VV>

Table 5: vertexlist View Functions

Example Return
for(auto&& [vid,uv] : incidence(g,u)) edge_view<VId,false,E,void>
for(auto&& [vid,uv,val] : incidence(g,u,evf)) edge_view<VId,false,E,EV>

Table 6: incidence View Functions

3.2.5 neighbors Views

neighbors views iterate over a range of edges for a vertex, returning a vertex_view of each neighboring target vertex on
each iteration. Table ?? shows the neighbors function overloads and their return values.

Since the source vertex u is available when calling a neighbors function, there’s no need to include sourced versions of
the function to include source_id in the output.

Example Return
for(auto&& [vid,v] : neighbors(g,u)) neighbor_view<VId,false,V,void>
for(auto&& [vid,v,val] : neighbors(g,u,vvf)) neighbor_view<VId,false,V,VV>

Table 7: neighbors View Functions

3.2.6 edgelist Views

edgelist views iterate over all edges for all vertices, returning a edge_view on each iteration. Table ?? shows the
edgelist function overloads and their return values.

Example Return
for(auto&& [uid,vid,uv] : edgelist(g)) edge_view<VId,true,E,void>
for(auto&& [uid,vid,uv,val] : edgelist(g,evf)) edge_view<VId,true,E,EV>

Table 8: edgelist View Functions

3.2.7 depth first search Views

depth first search views iterate over the vertices and edges from a given seed vertex, returning a vertex_view or edge_view
on each iteration when it is first encountered, depending on the function used. Table ?? shows the functions and their return

values.
While not shown in the examples, all functions have a final, optional allocator parameter that defaults to std::allocator

<bool>. It is used for containers that are internal to the view. The <bool> argument has no particular meaning.

3.2.8 breadth first search Views

breadth first search views iterate over the vertices and edges from a given seed vertex, returning a vertex_view or edge_view
on each iteration when it is first encountered, depending on the function used. Table ?? shows the functions and their return

values.

9



Example Return
for(auto&& [vid,v] : vertices_depth_first_search(g,seed)) vertex_view<VId,V,void>
for(auto&& [vid,v,val] : vertices_depth_first_search(g,seed,vvf)) vertex_view<VId,V,VV>
for(auto&& [vid,uv] : edges_depth_first_search(g,seed)) edge_view<VId,false,E,void>
for(auto&& [vid,uv,val] : edges_depth_first_search(g,seed,evf)) edge_view<VId,false,E,EV>
for(auto&& [uid,vid,uv] : sourced_edges_depth_first_search(g,seed)) edge_view<VId,true,E,void>
for(auto&& [uid,vid,uv,val] : sourced_edges_depth_first_search(g,seed,evf)) edge_view<VId,true,E,EV>

Table 9: depth first search View Functions

While not shown in the examples, all functions have a final, optional allocator parameter that defaults to std::allocator
<bool>. It is used for containers that are internal to the view. The <bool> argument has no particular meaning.

Example Return
for(auto&& [vid,v] : vertices_breadth_first_search(g,seed)) vertex_view<VId,V,void>
for(auto&& [vid,v,val] : vertices_breadth_first_search(g,seed,vvf)) vertex_view<VId,V,VV>
for(auto&& [vid,uv] : edges_breadth_first_search(g,seed)) edge_view<VId,false,E,void>
for(auto&& [vid,uv,val] : edges_breadth_first_search(g,seed,evf)) edge_view<VId,false,E,EV>
for(auto&& [uid,vid,uv] : sourced_edges_breadth_first_search(g,seed)) edge_view<VId,true,E,void>
for(auto&& [uid,vid,uv,val] : sourced_edges_breadth_first_search(g,seed,evf)) edge_view<VId,true,E,EV>

Table 10: breadth first search View Functions

3.2.9 topological sort Views

topological sort views iterate over the vertices and edges from a given seed vertex, returning a vertex_view or edge_view
on each iteration when it is first encountered, depending on the function used. Table ?? shows the functions and their return
values.

While not shown in the examples, all functions have a final, optional allocator parameter that defaults to std::allocator
<bool>. It is used for containers that are internal to the view. The <bool> argument has no particular meaning.

Example Return
for(auto&& [vid,v] : vertices_topological_sort(g,seed)) vertex_view<VId,V,void>
for(auto&& [vid,v,val] : vertices_topological_sort(g,seed,vvf)) vertex_view<VId,V,VV>
for(auto&& [vid,uv] : edges_topological_sort(g,seed)) edge_view<VId,false,E,void>
for(auto&& [vid,uv,val] : edges_topological_sort(g,seed,evf)) edge_view<VId,false,E,EV>
for(auto&& [uid,vid,uv] : sourced_edges_topological_sort(g,seed)) edge_view<VId,true,E,void>
for(auto&& [uid,vid,uv,val] : sourced_edges_topological_sort(g,seed,evf)) edge_view<VId,true,E,EV>

Table 11: topological sort View Functions

3.3 Graph Container Interface
The Graph Container Interface defines the primitive concepts, traits, types and functions used to define and access an adacency
graph, no matter its internal design and organization. Thus, it is designed to reflect all forms of adjacency graphs including a
vector of lists, CSR graph and adjacency matrix, whether they are in the standard or external to the standard.

All algorithms in this proposal require that vertices are stored in random access containers and that vertex_id_t<G> is
integral, and it is assumed that all future algorithm proposals will also have the same requirements.

The Graph Container Interface is designed to support a wider scope of graph containers than required by the views and
algorithms in this proposal. This enables for future growth of the graph data model (e.g. incoming edges on a vertex), or as a
framework for graph implementations outside of the standard. For instance, existing implementations may have requirements
that cause them to define features with looser constraints, such as sparse vertex ids, non-integral vertex ids, or storing vertices in
associative bi-directional containers (e.g. std::map or std::unordered map). Such features require specialized implementations
for views and algorithms. The performance for such algorithms will be sub-optimal, but is preferrable to run them on the
existing container rather than loading the graph into a high-performance graph container and then running the algorithm on it,
where the loading time can far outweigh the time to run the sub-optimal algorithm. To achieve this, care has been taken to make
sure that the use of concepts chosen is appropriate for algorithm, view and container.

10



3.3.1 Concepts

Table ?? summarizes the concepts in the Graph Container Interface, allowing views and algorithms to verify a graph imple-
mentation has the expected requirements for an adjacency_list or sourced_adjacency_list.

Sourced edges have a source id on them in addition to a target id. A sourced_adjacency_list has sourced edges.

Concept Definition
vertex_range<G> vertices(g) returns a sized, forward range; vertex_id(g,ui) exists
targeted_edge<G> target_id(g,uv) and target(g,uv) exist
sourced_edge<G> source_id(g,uv) and source(g,uv) exist
adjacency_list<G> vertex_range<G> and targeted_edge<G,edge<G>> and edges(g,_)

functions return a forward range
sourced_adjacency_list<G> adjacency_list<G> and sourced_edge<G, edge_t<G>> and

edge_id(g,uv) exists

Table 12: Graph Container Interface Concepts

3.3.2 Traits

Table ?? summarizes the type traits in the Graph Container Interface, allowing views and algorithms to query the graph’s
characteristics.

Trait Type Comment
has_degree<G> concept Is the degree(g,u) function available?
has_find_vertex<G> concept Are the find_vertex(g,_) functions

available?
has_find_vertex_edge<G> concept Are the find_vertex_edge(g,_) functions

available?
has_contains_edge<G> concept Is the contains_edge(g,uid,vid)

function available?
define_unordered_edge<G,E> : false_type struct Specialize for edge implementation to derive

from true_type for unordered edges
is_unordered_edge<G,E> struct conjunction<define_unordered_edge

<E>, is_sourced_edge<G, E>>
is_unordered_edge_v<G,E> type alias
unordered_edge<G,E> concept
is_ordered_edge<G,E> struct negation<is_unordered_edge<G,E>>
is_ordered_edge_v<G,E> type alias
ordered_edge<G,E> concept
define_adjacency_matrix<G> : false_type struct Specialize for graph implementation to derive

from true_type for edges stored as a square
2-dimensional array

is_adjacency_matrix<G> struct
is_adjacency_matrix_v<G> type alias
adjacency_matrix<G> concept

Table 13: Graph Container Interface Type Traits

3.3.3 Types

Table ?? summarizes the type aliases in the Graph Container Interface. These are the types used to define the objects in a graph
container, no matter its internal design and organization. Thus, it is designed to be able to reflect all forms of adjacency graphs
including a vector of lists, CSR graph and adjacency matrix.

The type aliases are defined by either a function specialization for the underlying graph container, or a refinement of one of
those types (e.g. an iterator of a range). Table ?? describes the functions in more detail.

11



graph_value(g), vertex_value(g,u) and edge_value(g,uv) can be optionally implemented, depending on
whether the graph container supports values on the graph, vertex and edge types.

Type Alias Definition Comment
graph_reference_t<G> add_lvalue_reference<G>
graph_value_t<G> decltype(graph_value(g)) optional
vertex_range_t<G> decltype(vertices(g))
vertex_iterator_t<G> iterator_t<vertex_range_t<G>>
vertex_t<G> range_value_t<vertex_range_t<G>>
vertex_reference_t<G> range_reference_t<vertex_range_t<G>>
vertex_id_t<G> decltype(vertex_id(g))
vertex_value_t<G> decltype(vertex_value(g)) optional
vertex_edge_range_t<G> decltype(edges(g,u))
vertex_edge_iterator_t<G> iterator_t<vertex_edge_range_t<G>>
edge_t<G> range_value_t<vertex_edge_range_t<G>>
edge_reference_t<G> range_reference_t<vertex_edge_range_t<G>>
edge_value_t<G> decltype(edge_value(g)) optional

The following is only available when the optional source_id(g,uv) is defined for the edge
edge_id_t<G> decltype(pair(source_id(g,uv),target_id(g,uv)))

Table 14: Graph Container Interface Type Aliases

3.3.4 Functions

[PHIL: The functions in the Graph Container Interface are semi-stable. New functions are not expected, but overloads may be
added or removed for different combinations of vertex id and references as we refine our use cases.]

Table ?? summarizes the functions in the Graph Container Interface. These are the primitive functions used to access an
adacency graph, no matter its internal design and organization. Thus, it is designed to be able to reflect all forms of adjacency
graphs including a vector of lists, CSR graph and adjacency matrix.

Functions that have n/a for their Default Implementation must be defined by the author of a Graph Container implementa-
tion. graph_value(g), vertex_value(g,u) and edge_value(g,uv) can be optionally implemented, depending
on whether the graph container supports values on the graph, vertex and edge types.

vertex_id_t<G> is defined by the type returned by vertex_id(g) and it defaults to the difference type of the
underlying container used for vertices (e.g int64 t for 64-bit systems). This is sufficient for all situations. However, there are
often space and performance advantages if a smaller type is used, such as int32 t or even int16 t. It is recommended to consider
overriding this function for optimal results, assuring that it is also large enough for the number of possible vertices and edges
in the application. It will also need to be overridden if the implementation doesn’t expose the vertices as a range.

find_vertex(g,uid) is constant complexity because all algorithms in this proposal require that vertex_range_t
<G> is a random access range.

If the concept requirements for the default implementation aren’t met by the graph container the function will need to be
overridden.

Edgelists are assumed to be either be an edgelist view of an adjacency graph, or a standard range with source id and target id
values. There is no need for additional functions when a range is used.

3.4 Graph Container Implementation

3.4.1 csr graph Graph Container

The csr graph is a high-performance, static graph container that uses Compressed Sparse Row format to store it’s vertices,
edges and associated values. Once constructed, it cannot be modified.

template <class EV = void,
class VV = void,
class GV = void,
integral VId = uint32_t,
class Alloc = allocator<uint32_t>>

class csr_graph;

12

https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_%28CSR%2C_CRS_or_Yale_format%29


Function Return Type Complexity Default Implementation
graph_value(g) graph_value_t<G> constant n/a, optional
vertices(g) vetex_range_t<G> constant n/a
vertex_id(g,ui) vetex_id_t<G> constant ui - begin(vertices(g))

Override to define a different
vertex_id_t<G> type (e.g. int32 t).

vertex_value(g,u) vertex_value_t<G> constant n/a, optional
degree(g,u) integral constant size(edges(g,u)) if sized_range<

vertex_edge_range_t<G>>
find_vertex(g,uid) vertex_iterator_t<G> constant begin(vertices(g))+ uid

if random_access_range<
vertex_range_t<G>>

edges(g,u) vertex_edge_range_t<G> constant n/a
edges(g,uid) vertex_edge_range_t<G> constant edges(g,*find_vertex(g,uid))
target_id(g,uv) vertex_id_t<G> constant n/a
target(g,uv) vertex_t<G> constant *(begin(vertices(g))+ target_id(g

, uv)) if
random_access_range<
vertex_range_t<G>> && integral<
target_id(g,uv)>

edge_value(g,uv) edge_value_t<G> constant n/a, optional
find_vertex_edge(g,u,vid) vertex_edge_t<G> linear find(edges(g,u), [](uv)target_id(

g,uv)==vid;})
find_vertex_edge(g,uid,vid) vertex_edge_t<G> linear find_vertex_edge(g,*find_vertex(g

,uid),vid)
contains_edge(g,uid,vid) bool constant uid < size(vertices(g))&& vid <

size(vertices(g)) if
is_adjacency_matrix_v<G>.

linear find_vertex_edge(g,uid)!= end(
edges(g,uid))
otherwise.

The following are only available when the optional source_id(g,uv) is defined for the edge
source_id(g,uv) vertex_id_t<G> constant n/a, optional
source(g,uv) vertex_t<G> constant *(begin(vertices(g))+ source_id(g

,uv)) if
random_access_range<
vertex_range_t<G>> && integral<
target_id(g,uv)>

edge_id(g,uv) edge_id_t<G> constant pair(source_id(g,uv),target_id(g,
uv))

Table 15: Graph Container Interface Functions

3.4.2 csr partite graph Graph Container (In Design)

[PHIL: This is experimental]
The csr_partite_graph extends csr_graph to have multiple partitions, where each partition defines a different

value type for the vertex and edge. The same template arguments are used, but it also expects that the VV and EV arguments
are std::variant, and the number of types in each is the same. The number of types in the variants define the number of
partitions. The edge types apply to the outgoing edges of the vertices in the same partition. std::monostate can be used if
no value is needed for a vertex or edge in a partition.

Example usage

using VV = std::variant<int,double,bool>;
using EV = std::variant<int,int,std::monostate>; // no outgoing edges in the final

partition
using G = csr_partite_graph<EV, VV>;
G g = ...; // construct g with data
for(size_t p = 0; p < partition_size(g); ++p) {

for(auto&& [uid,u] : partition(g,p)) {
for(auto&& [vid,uv] : incidence(g,u)) {

// do interesting things with uv

13



}
}

}

4 Design - Graph Container Author

4.1 Customization Points
[PHIL: Describe CPO’s in general that can apply to both niebloids and tag invoke. tag invoke may have some controversy
because it is so new.]

We follow the lead of P2300r5 [?] section 5.9 for our implementation of customization points. The text in this section has
been taken from that paper and modified to be specific to graphs.

The contemporary technique for customization in the Standard Library is customization point objects. A customization
point object, will it look for member functions and then for nonmember functions with the same name as the customization
point, and calls those if they match. This is the technique used by the C++20 ranges library. However, it has several unfortunate
consequences:

1. It does not allow for easy propagation of customization points unknown to the adaptor to a wrapped object, which makes
writing universal adapter types much harder - and this proposal uses quite a lot of those.

2. It effectively reserves names globally. Because neither member names nor ADL-found functions can be qualified with
a namespace, every customization point object that uses the ranges scheme reserves the name for all types in all names-
paces.

This paper proposes to instead use the mechanism described in tag invoke: A general pattern for supporting customisable
functions: tag_invoke; the wording for tag_invoke has been incorporated into the proposed specification in this paper.

In short, instead of using globally reserved names, tag_invoke uses the type of the customization point object itself as
the mechanism to find customizations. It globally reserves only a single name - tag_invoke - which itself is used the same
way that ranges-style customization points are used. All other customization points are defined in terms of tag_invoke. For
example, the customization for std::graph::vertices(g) will call tag_invoke(std::graph::vertices, g
), instead of attempting to invoke g.vertices(), and then vertices(g) if the member call is not valid.

Using tag_invoke has the following benefits:

1. It reserves only a single global name, instead of reserving a global name for every customization point object we define.

2. It is possible to propagate customizations to a subobject, because the information of which customization point is being
resolved is in the type of an argument, and not in the name of the function:

// forward most customizations to a subobject
template<typename Tag, typename ...Args>
friend auto tag_invoke(Tag && tag, wrapper & self, Args &&... args) {

return std::forward<Tag>(tag)(self.subobject, std::forward<Args>(args)...);
}

// but override one of them with a specific value
friend auto tag_invoke(specific_customization_point_t, wrapper & self) {

return self.some_value;
}

3. It is possible to pass those as template arguments to types, because the information of which customization point is being
resolved is in the type.

4.2 Function Specialization

5 Specification

14

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1895r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1895r0.pdf


6 Library introduction [library]

7 Graph introduction [graph]

8 algorithms [graph.algorithms]

9 views [graph.views]

10 customization points [graph.functions]

11 Old Introduction (Content after this will be moved above or removed)

11.1 Namespaces and Headers
Graph algorithms, views and containers are unique and not easily interchanged with other elements of the standard library. For
instance, graph algorithms wouldn’t be used on a non-graph range. For this reason it is recommended to have them in their
own namespaces. Suggestions for namespaces are std::graph and std::ranges::graph for the root namespace. The
graph namespaces proposed include

std::tag_invoke

std::graph

std::graph::views

Proposed headers include

<graph>

<graph_view>

<graph_algorithm>

<csr_graph>

12 Technical Specifications
TBA

12.1 Header <graph> synopsis [graph.syn]

namespace std::graph {

// ...

template <typename G>
auto vertices(G&& g);

template <typename G>
auto vertex_id(G&& g, vertex_iterator_t<G>);

template <typename G>
auto vertex_value(G&& g, vertex_reference_t<G>);

// ...

template <class G>

15



inline constexpr bool is_adjacency_matrix_v = false;

template <class E>
inline constexpr bool is_undirected_edge_v = false;

template <class G>
concept vertex_range = ranges::forward_range<vertex_range_t<G>> &&

ranges::sized_range<vertex_range_t<G>> &&
requires(G&& g, vertex_iterator_t<G> ui) {

{ vertices(g) } -> ranges::forward_range;
vertex_id(g, ui);

};

template <class G, class ER>
concept targeted_edge = ranges::forward_range<ER> &&
requires(G&& g, ranges::range_reference_t<ER> uv) {

target_id(g, uv);
target(g, uv);

};

template <class G, class ER>
concept sourced_edge =
requires(G&& g, ranges::range_reference_t<ER> uv) {

source_id(g, uv);
source(g, uv);

};

template <class G>
concept adjacency_list = vertex_range<G> &&

targeted_edge<G, vertex_edge_range_t<G>> &&
requires(

G&& g, vertex_reference_t<G> u, vertex_id_t<G> uid, ranges::range_reference_t<
vertex_edge_range_t<G>> uv) {

{ edges(g, u) } -> ranges::forward_range;
{ edges(g, uid) } -> ranges::forward_range;

};

template <class G>
concept sourced_adjacency_list = adjacency_list<G> && sourced_edge<G,

vertex_edge_range_t<G>> &&
requires(G&& g, edge_reference_t<G> uv) {

edge_id(g, uv);
};

template <class G>
concept undirected_incidence_graph = sourced_adjacency_list<G> &&

is_undirected_edge_v<edge_t<G>>;

template <class G>
concept directed_incidence_graph = !undirected_incidence_graph<G>;

template <class G>
concept adjacency_matrix = is_adjacency_matrix_v<G>;

template <class G>
concept has_degree = requires(G&& g, vertex_reference_t<G> u) {

{degree(g, u)};

16



};

template <class G>
concept has_find_vertex = requires(G&& g, vertex_id_t<G> uid) {

{ find_vertex(g, uid) } -> forward_iterator;
};

template <class G>
concept has_find_vertex_edge = requires(G&& g, vertex_id_t<G> uid, vertex_id_t<G>

vid, vertex_reference_t<G> u) {
{ find_vertex_edge(g, u, vid) } -> forward_iterator;
{ find_vertex_edge(g, uid, vid) } -> forward_iterator;

};

template <class G>
concept has_contains_edge = requires(G&& g, vertex_id_t<G> uid, vertex_id_t<G> vid)

{
{ contains_edge(g, uid, vid) } -> convertible_to<bool>;

};

}

The following is a synopsis of the functions and classes above.

template <typename G>
auto vertices(G&& g);

• Preconditions: TBA.

• Effects: TBA.

• Complexity: TBA.

• Returns: TBA.

• Remarks: TBA.

template <typename G>
auto vertex_id (G&& g, vertex_iterator_t<G>);

• Preconditions: TBA.

• Effects: TBA.

• Complexity: TBA.

• Returns: TBA.

• Remarks: TBA.

template <typename G>
auto vertex_value (G&& g, vertex_reference_t<G>);

• Preconditions: TBA.

• Effects: TBA.

• Complexity: TBA.

• Returns: TBA.

• Remarks: TBA.

17



12.2 Header <graph_view> synopsis [graph.syn]

namespace std::graph::views {

// ...

template <typename G>
auto vertexlist(G&& g);

template <typename G>
auto incidence(G&& g, vertex_reference_t<G>);

template <typename G>
auto neighbors(G&& g, vertex_reference_t<G>);

template <typename G>
auto edgelist(G&& g);

// ...
// vertices_depth_first_search
// edges_depth_first_search
// sourced_edges_depth_first_search
// vertices_breadth_first_search
// edges_breadth_first_search
}

12.3 Header <graph_algorithm> synopsis [graph.syn]

namespace std::graph {

// ...tag_invoke

// ...
}

12.4 Header <csr_graph> synopsis [graph.syn]

namespace std::graph {

// ...

template<class EV, class VV, class GV, class VId, class Alloc>
class csr_graph;

// ...
}

13 Acknowledgements
Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the Standards Council
of Canada. The authors wish to further thank the members of SG19 for their contributions.

18


