
Nxxxx: Variable length prefixed length strings

Document #: Nxxxx
Date: 2025-06-24
Project: Programming Language C
Reply-to: Niall Douglas

<s_sourceforge@nedprod.com>

Null terminated byte strings (NTBS) have been the traditional way of implementing text strings
in C almost since its inception. NTBSs have the upside of minimum possible storage overhead,
but they cost more processor time to use, are unnecessarily heavy on CPU memory caches, are a
major source of bugs and security vulnerabilities, and given how RAM capacities have exponentially
exploded in recent decades, it is probably time for C to standardise a length prefixed byte string.

WG14 has been working on this for many years now in one form or another. Most recently, it has
been around [N3306] strb_t: A standard string buffer type however that is actually orthogonal to
length prefixed arrays as it concerns dynamic memory allocated string buffers. Rather, the most
recent paper I am aware of specifically dealing with length prefixed variably sized arrays is [N3210]
A string type for C in 2024. That proposed:

1 struct {
2 size_t size;
3 char8_t data[/* size */];
4 };

... with the char8_t array being required to be zero terminated for backwards compatibility.

WG14 discussion for that paper felt that spending a size_t overhead per ’modern string’ was too
much, and it was wondered if a more compact length prefix could be designed. It was suggested we
use the same technique as what UTF-8 uses to create a variable length prefix to minimise overhead.
However others were concerned that this would confuse UTF-8 parsers, and that could open security
concerns.

There is encoding space left unused by UTF-8 however. Would this be sufficient for our needs?
Let’s find out!

Contents

1 Quick recap of UTF-8 encoding 2

2 The proposed variable length prefix encoding 3
2.1 Array lengths zero to seven . 3
2.2 Array lengths eight to seventy-one . 3
2.3 Array lengths seventy-two to 262k . 4
2.4 Array lengths 262k - 4 trillion . 4

1

mailto:s_sourceforge@nedprod.com

2.5 The remaining prefixes . 4

3 UTF-8 support 4

4 Language support 5

5 Runtime overhead 5

6 References 6

1 Quick recap of UTF-8 encoding

UTF-8 uses the top bits of each octet to describe a variable length encoding of a UTF codepoint.
The rules are simple:

1. If the top bit is zero, the remaining seven bits are codepoints 0-127.

2. If the top three bits are 110xxyyy, there will be a second continuation octet of the form 10

yyzzzz.

3. If the top four bits are 1110wwww, there will be two continuation octets of the form 10xxxxyy,
10yyzzzz.

4. If the top five bits are 11110uvv, there will be three continuation octets of the form 10vvwwww,
10xxxxyy, 10yyzzzz.

As continuation bytes always have the top bits set of 10, you can always find the beginning of the
current UTF-8 sequence from any pointer or index into an array by scanning backwards by up to
three bytes. This is known as self-synchronisation and it is a useful property.

If you examine the coding above, you will see that these octet values can never appear in a legal
UTF-8 sequence:

There are two illegal values at:

• 0xc0 (11000000)

• 0xc1 (11000001)

There are three illegal values at:

• 0xf5 (11110101)

• 0xf6 (11110110)

• 0xf7 (11110111)

And finally, there are eight illegal values at:

• 0xf8 (11111000)

• 0xf9 (11111001)

• 0xfa (11111010)

2

• 0xfb (11111011)

• 0xfc (11111100)

• 0xfd (11111110)

• 0xfe (11111101)

• 0xff (11111111)

The proposal is that we build a variable length prefix encoding which is ‘UTF-8 aware’ in the sense
that a correct UTF-8 parser will never parse our variable length prefix as a valid UTF-8 sequence.

2 The proposed variable length prefix encoding

It is proposed that the layout in memory for a variable length array of uint8_t would be:

1 struct varuint8_t
2 {
3 uint8_t length[/* 1, 2, 4 or 8 */];
4 uint8_t data[/* decoded length */];
5 };

length would always be one of one, two, four or eight as some processors have SIMD optimisations
for UTF-8 processing which could be reused here1.

data would be optionally zero terminated. This is because varuint8_t is a variable length array of
uint8_t which can also be treated as a variable length array of char8_t, as we shall see later.

2.1 Array lengths zero to seven

A leading octet in the range 0xf8-0xff would indicate a very short array length 0-7 long, as there
is three bits of storage in a single byte prefix.

Examples:

• 0xf8 is a zero length array, and is a total of one octet of storage.

• 0xf9,0x78 is a one item length array, and is a total of two octets of storage.

If used to represent a NTBS, the added overhead is a worst case of 100% and a best case of 12.5%.
If the trailing null isn’t needed, it has the same overhead as a NTBS.

2.2 Array lengths eight to seventy-one

A leading octet 0xf5 would indicate a short array length 8-71 long. There is one continuation octet
of the form 10xxxxxx which means there is six bits of storage in a two byte prefix.

Example:

• 0xf5,0x80,0x4e,0x69,0x61,0x6c,0x6c,0x20,0x44,0x00 = Niall D0 is an eight item length array,
and is a total of ten octets of storage.

1https://lemire.me/blog/2020/10/20/ridiculously-fast-unicode-utf-8-validation/

3

https://lemire.me/blog/2020/10/20/ridiculously-fast-unicode-utf-8-validation/

If used to represent a NTBS, the added overhead is a worst case of 25% and a best case of 2.8%. If
the trailing null isn’t needed, it has a worst case of 12.5%.

2.3 Array lengths seventy-two to 262k

A leading octet 0xf6 would indicate an array length 72-262215 long. There are three continuation
octets of the form 10xxxxxx,10yyyyyy,10zzzzzz which means there is eighteen bits of storage in a
four byte prefix. As with UTF-8, continuation octets are big endian in orientation.

If used to represent a NTBS, the added overhead is a worst case of 5.6% and a best case of approx-
imately zero.

2.4 Array lengths 262k - 4 trillion

A leading octet 0xf7 would indicate an array length 262216-4398046773319 long. There are seven
continuation octets which means there is forty-two bits of storage in an eight byte prefix. As with
UTF-8, continuation octets are big endian in orientation.

At this scale, the added overhead over a NTBS is always approximately zero.

2.5 The remaining prefixes

For now, the leading octets 0xc0 and 0xc1 would be reserved for future expansion in the standard.

This author’s personal preference for string views/slices would be fat pointers, however if the com-
mittee felt mutable string buffers were better and we need to additionally encode a reservation or
capacity, that’s what these prefixes ought to be used for.

3 UTF-8 support

The proposal would be that standard library functions could safely return a char8_t * from a
varint8_t * in various ways e.g.

1 // Returns the size of the array for access
2 size_t varuint8_length(const struct varuint8_t *arr);
3

4 // Returns the size of the array for memory copying
5 size_t varuint8_sizeof(const struct varuint8_t *arr);
6

7 // Return a pointer to the uint8_t at the beginning of the array
8 // Returns nullptr if array is zero length
9 uint8_t *varuint8_front(struct varuint8_t *arr);

10

11 // Return a pointer to the uint8_t at the end of the array
12 // Returns nullptr if array is zero length
13 uint8_t *varuint8_back(struct varuint8_t *arr);
14

15 // Return a pointer to the uint8_t at idx into the array
16 // Returns nullptr if idx is outside array
17 uint8_t *varuint8_index(struct varuint8_t *arr, size_t idx);
18

19 // Return a NTBS if array is null terminated AND contains

4

20 // no intermediate null values, nullptr otherwise
21 char8_t *ntbs_from_varuint8(struct varuint8_t *arr);
22

23 // Return a pointer to the char8_t at or preceding arr[idx]
24 // Returns nullptr if idx is outside array or there is no
25 // valid UTF-8 codepoint at that index
26 char8_t *char8_from_varuint8_index(struct varuint8_t *arr, size_t idx);

4 Language support

It is not proposed yet, however if the language could directly support struct varuint8_t values e.g.
so they could be copied around by value and sizeof and arr[N] worked out of the box, that would
be great.

5 Runtime overhead

The storage space overheads have already been indicated, but what sort of runtime overhead might
there be?

I implemented varuint8_length() to see how bad it might be:
varuint8_length:

ldrb w1, [x0]
mov x2, x0
and x0, x1, 7
cmp w1, 247
bhi .L1
cmp w1, 245
beq .L8
cmp w1, 246
beq .L9
mov x0, -1
cmp w1, 247
beq .L10

.L1: # Array lengths 0-7
ret

.L10: # Array lengths 262k-4t
ldr x1, [x2]
and x0, x1, 1056964608
ubfx x2, x1, 16, 8
ubfx x3, x1, 56, 6
ubfiz x2, x2, 30, 6
orr x0, x0, x2
and x2, x1, 17732923532771328
orr x2, x3, x2, lsr 42
ubfx x3, x1, 32, 8
add x0, x0, x2
and x2, x1, 69269232549888
ubfx x1, x1, 8, 8
ubfiz x3, x3, 18, 6
orr x2, x3, x2, lsr 28
ubfiz x1, x1, 36, 6

5

add x1, x1, 262144
add x1, x1, 72
add x1, x2, x1
add x0, x0, x1
ret

.L9: # Array lengths 72-262k
ldr w1, [x2]
and x0, x1, 4128768
ubfx x2, x1, 24, 6
ubfx x1, x1, 8, 8
orr x0, x2, x0, lsr 10
ubfiz x1, x1, 12, 6
add x1, x1, 72
add x0, x0, x1
ret

.L8: # Array lengths 8-71
ldrb w0, [x2, 1]
and x0, x0, 63
add x0, x0, 8
ret

Godbolt: https://godbolt.org/z/dEnfM6454

On a modern out of order superscaler CPU, I reckon length of array lengths 8-71 would take
approximately three ticks; 72-262k would take approximately five ticks; 262k-4t approximately
eight ticks.

This isn’t the single tick overhead of a simple size_t length prefix, but it isn’t too bad either. For
some SIMD architectures, it should be possible to implement varuint8_length() branch free too.

6 References

[N3210] Uecker, Martin
A string type for C
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3210.pdf

[N3306] Bazley, Chris
strb_t: A standard string buffer type
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3306.pdf

6

https://godbolt.org/z/dEnfM6454
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3210.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3306.pdf

	Quick recap of UTF-8 encoding
	The proposed variable length prefix encoding
	Array lengths zero to seven
	Array lengths eight to seventy-one
	Array lengths seventy-two to 262k
	Array lengths 262k - 4 trillion
	The remaining prefixes

	UTF-8 support
	Language support
	Runtime overhead
	References

